DOI QR코드

DOI QR Code

ON 𝜙-w-FLAT MODULES AND THEIR HOMOLOGICAL DIMENSIONS

  • Zhang, Xiaolei (Department of Basic Courses Chengdu Aeronautic Polytechnic) ;
  • Zhao, Wei (School of Mathematics ABa Teachers University)
  • Received : 2020.09.23
  • Accepted : 2021.01.29
  • Published : 2021.07.31

Abstract

In this paper, we introduce and study the class of 𝜙-w-flat modules which are generalizations of both 𝜙-flat modules and w-flat modules. The 𝜙-w-weak global dimension 𝜙-w-w.gl.dim(R) of a commutative ring R is also introduced and studied. We show that, for a 𝜙-ring R, 𝜙-w-w.gl.dim(R) = 0 if and only if w-dim(R) = 0 if and only if R is a 𝜙-von Neumann ring. It is also proved that, for a strongly 𝜙-ring R, 𝜙-w-w.gl.dim(R) ≤ 1 if and only if each nonnil ideal of R is 𝜙-w-flat, if and only if R is a 𝜙-PvMR, if and only if R is a PvMR.

Keywords

Acknowledgement

The first author was supported by the Natural Science Foundation of Chengdu Aeronautic Polytechnic (No. 062026). The second author was supported by the National Natural Science Foundation of China (No. 12061001).

References

  1. D. F. Anderson and A. Badawi, On ϕ-Prufer rings and ϕ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
  2. D. F. Anderson and A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
  3. A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
  4. A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
  5. A. Badawi and T. G. Lucas, On Φ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1-32.
  6. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  7. H. Kim and F. Wang, On ϕ-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.
  8. H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp. https://doi.org/10.1142/S0219498813501338
  9. B. Stenstrom, Rings of Quotients, Springer-Verlag, New York, 1975.
  10. F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111-120.
  11. F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9. https://doi.org/10.3969/j.issn.1001-8395.2010.01.001
  12. F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
  13. F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
  14. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  15. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
  16. F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4.1327
  17. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
  18. W. Zhao, On Φ-flat modules and Φ-Prufer rings, J. Korean Math. Soc. 55 (2018), no. 5, 1221-1233. https://doi.org/10.4134/JKMS.j170667
  19. W. Zhao, F. Wang, and G. Tang, On φ-von Neumann regular rings, J. Korean Math. Soc. 50 (2013), no. 1, 219-229. https://doi.org/10.4134/JKMS.2013.50.1.219