Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.: NRF-2020R1A6A1A03040583).
References
- S. Russell & P. Norvig. (2020). Artificial intelligence: a modern approach. London : Pearson Education Limited
- I. Masi, Y. Wu, T. Hassner & P. Natarajan. (2018). Deep face recognition: A survey. 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 471-478.
- K. He, X. Zhang, S. Ren & J. Sun. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778.
- kaggle. (2017). Adience Benchmark Gender And Age Classification. kaggle. (Online). https://www.kaggle.com/ttungl/adience-benchmark-gender-and-age-classification
- K. Yan, S. Huang, Y. Song, W. Liu & N. Fan. (2017). Face recognition based on convolution neural network. 2017 36th Chinese Control Conference (CCC), 4077-4081.
- H. Robbins & S. Monro. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 400-407.
- D. Gunning & D. Aha. (2019). DARPA's explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44-58. https://doi.org/10.1609/aimag.v40i2.2850
- A. B. Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina & R. Benjamins. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
- T. Peltola. (2018). Local interpretable model-agnostic explanations of Bayesian predictive models via Kullback-Leibler projections. ArXiv Preprint ArXiv:1810.02678.
- M. T. Ribeiro, S. Singh & C. Guestrin. (2016). " Why should i trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144.
- H. Yoo, S. Han & K. Chung (2021). Diagnosis Support Model of Cardiomegaly based on CNN using ResNet and Explainable Feature Map. IEEE Access.
- M. Story & R. G. Congalton. (1986). Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397-399.
- I. Sutskever, J. Martens, G. Dahl & G. Hinton. (2013). On the importance of initialization and momentum in deep learning. International Conference on Machine Learning, 1139-1147.