DOI QR코드

DOI QR Code

헴철이 풍부한 영양원이 혐기성 세균의 생장과 생존에 미치는 영향: 락토바실러스 가세리 모델연구

Effect of Heme-rich Nutrient on Anaerobic Bacterial Growth and Survival: A Model Study on Lactobacillus gasseri

  • 이승기 (가톨릭대학교 생명공학과) ;
  • 김필 (가톨릭대학교 생명공학과)
  • Lee, Seungki (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
  • 투고 : 2021.02.22
  • 심사 : 2021.03.15
  • 발행 : 2021.03.28

초록

Lactic acid bacteria (LAB), belonging to the Firmicutes phylum, lack heme biosynthesis and, thus, are characterized as fermentative and catalase-negative organisms. To verify the hypothesis that heme-rich-nutrients might compensate the heme-biosynthesis incapability of non-respiratory LAB in animal gut, a heme-rich-nutrient was fed to a dog and its fecal microbiome was analyzed. Firmicutes abundance in the feces from the heme-rich-nutrient-fed dog was 99%, compared to 92% in the control dog. To clarify the reason of increased Firmicutes abundance in the feces from the heme-rich-nutrient-fed dog, Lacobacillus gasseri were used as model anerobic LAB to study a purified heme (hemin). The anaerobic growth of L. gasseri in the medium with 25 µM hemin supplementation was faster than that in the medium without hemin, while the growth in the 50 µM hemin-supplemented medium did not vary. Cellular activities of the cytochrome bd complex were 1.55 ± 0.19, 2.11 ± 0.14, and 2.20 ± 0.08 U/gcell in the cells from 0, 25, and 50 µM hemin-supplemented medium, while intracellular ATP concentrations were 7.90 ± 1.12, 11.95 ± 0.68, and 12.56 ± 0.58 µmolATP/gcell, respectively. The ROS-scavenging activities of the L. gasseri cytosol from 25 µM and 50 µM hemin-supplemented medium were 68% and 82% greater than those of the cytosol from no hemin supplemented-medium, respectively. These findings indicate that external hemin could compensate the heme-biosynthesis incapability of L. gasseri by increasing the cytosolic ROS-scavenging and extra ATP generation, possibly through increasing the electron transfer. Increase in the number of anaerobic bacteria in heme-rich-nutrient-fed animal gut is discussed based on the results.

키워드

과제정보

The authors appreciate Dibiome Co. for the helps testing dogs and collecting feces samples.

참고문헌

  1. Kim DY, Camilleri M. 2000. Serotonin: a mediator of the brain-gut connection. Am. J. Gastroenterol. 95: 2698. https://doi.org/10.1111/j.1572-0241.2000.03177.x
  2. Savage D. 1977. Microbial ecology of the gastrointestinal track. Ann. Rev. Microbiol. 31: 107-133. https://doi.org/10.1146/annurev.mi.31.100177.000543
  3. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7: 459.
  4. D'Argenio V, Salvatore F. 2015. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451: 97-102. https://doi.org/10.1016/j.cca.2015.01.003
  5. Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443-459. https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
  6. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, et al. 2014. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. 111: 805-810. https://doi.org/10.1073/pnas.1310750111
  7. Halawa MR, El-Salam MA, Mostafa BM, Sallout SS. 2019. The gut microbiome, Lactobacillus acidophilus; relation with type 2 diabetes mellitus. Curr. Diabetes Rev. 15: 480-485. https://doi.org/10.2174/1573399815666190206162143
  8. Arora T, Singh S, Sharma RK. 2013. Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29: 591-596. https://doi.org/10.1016/j.nut.2012.07.017
  9. Korean Ministry of Food and Drug Safety. 2019. KFDA Press release https://www.mfds.go.kr/brd/m_99/down.do?brd_id=ntc0021&seq=43656&data_tp=A&file_seq=43651.
  10. Lorence R, Carter K, Gennis RB, Matsushita K, Kaback HR. 1988. Trypsin proteolysis of the cytochrome d complex of Escherichia coli selectively inhibits ubiquinol oxidase activity while not affecting N, N, N', N'-tetramethyl-p-phenylenediamine oxidase activity. J. Biol. Chem. 263: 5271-5276. https://doi.org/10.1016/S0021-9258(18)60711-2
  11. Junemann S, Wrigglesworth JM. 1994. Antimycin inhibition of the cytochrome bd complex from Azotobacter vinelandii indicates the presence of a branched electron transfer pathway for the oxidation of ubiquinol. FEBS Lett. 345: 198-202. https://doi.org/10.1016/0014-5793(94)00372-6
  12. Fujimoto M, Yamada A, Kurosawa J, Kawata A, Beppu T, Takano H, Ueda K. 2012. Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces. Microb. Biotechnol. 5: 477-488. https://doi.org/10.1111/j.1751-7915.2011.00319.x
  13. Frangipani E, Haas D. 2009. Copper acquisition by the SenC protein regulates aerobic respiration in Pseudomonas aeruginosa PAO1. FEMS Microbiol. Lett. 298: 234-240. https://doi.org/10.1111/j.1574-6968.2009.01726.x
  14. Okawa M, Kinjo J, Nohara T, Ono M. 2001. DPPH (1,1-diphenyl2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharm. Bull. 24: 1202-1205. https://doi.org/10.1248/bpb.24.1202
  15. Afify AE-MM, Romeilah RM, Sultan SI, Hussein MM. 2012. Antioxidant activity and biological evaluations of probiotic bacteria strains. Int. J. Acad. Res. 4: 131-139. https://doi.org/10.7813/2075-4124.2012/4-5/B.18
  16. Brooijmans R, Smit B, Santos F, Van Riel J, de Vos WM, Hugenholtz J. 2009. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact. 8: 28. https://doi.org/10.1186/1475-2859-8-28
  17. Maresca D, Zotta T, Mauriello G. 2018. Adaptation to aerobic environment of Lactobacillus johnsonii/gasseri strains. Front. Microbiol. 9: 157. https://doi.org/10.3389/fmicb.2018.00157
  18. Hemolab Inc., 2020. Development of heme-iron containing non-GMO feed from breeding. IPET project final report. Registered number: 11-15430001003152-1543001.
  19. Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, et al. 2011. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22: 143-149. https://doi.org/10.1016/j.copbio.2010.12.001
  20. Yu T, Kong J, Zhang L, Gu X, Wang M, Guo T. 2019. New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis. Sci. Rep. 9: 13151. https://doi.org/10.1038/s41598-019-49688-8
  21. Lauer E, Kandler O. 1980. Lactobacillus gasseri sp. nov., a new species of the subgenus Thermobacterium. Zentralblatt fur Bakteriologie: I. Abt. Originale C: Allgemeine, angewandte und okologische Mikrobiologie. 1: 75-78. https://doi.org/10.1016/S0172-5564(80)80019-4
  22. Kadooka Y, Sato M, Ogawa A, Miyoshi M, Uenishi H, Ogawa H, et al. 2013. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br. J. Nutr. 110: 1696-1703. https://doi.org/10.1017/S0007114513001037
  23. Itoh H, Uchida M, Sashihara T, Ji Z-S, Li J, Tang Q, et al. 2011. Lactobacillus gasseri OLL2809 is effective especially on the menstrual pain and dysmenorrhea in endometriosis patients: randomized, double-blind, placebo-controlled study. Cytotechnology 63: 153-161. https://doi.org/10.1007/s10616-010-9326-5