과제정보
The authors acknowledge Higher Education Commission, Pakistan for the provision of funds for this study through TDF Grant No. 02-078 (awarded to corresponding author) and for Indigenous Ph.D. fellowship (awarded to first author).
참고문헌
- Khan Z, Shafique M, Nawaz HR, Jabeen N, Naz SA. 2019. Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. Pak. J. Pharm. Sci. 32:1913-1918.
- Bose A, Chawdhary V, Keharia H, Subramanian RB. 2014. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann. Microbiol. 64: 343-354. https://doi.org/10.1007/s13213-013-0669-y
- Zarai Jaouadi N, Rekik H, Ben Elhoul M, Rahem FZ, Hila CG, Ben Aicha HS, et al. 2015. A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int. J. Biol. Macromol. 79: 952-64. https://doi.org/10.1016/j.ijbiomac.2015.05.038
- Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
- Annamalai N, Rajeswari MV, Balasubramanian T. 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food Bioprod. Process. 92: 335-342. https://doi.org/10.1016/j.fbp.2013.08.009
- Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635. https://doi.org/10.1128/MMBR.62.3.597-635.1998
- Alemu F. 2015. Isolation and screening of protease enzyme producing bacteria from cheese at Dilla University, Ethiopia. Int. J. Food. Sci. Nutr. 4: 234-239. https://doi.org/10.11648/j.ijnfs.20150402.25
- Shavandi A, Silva TH, Bekhit AA, Bekhit AE. 2017. Keratin: dissolution, extraction and biomedical application. Biomater. Sci. 5: 1699-1735. https://doi.org/10.1039/C7BM00411G
- Burkhard P, Stetefeld J, Strelkov, Sergei V. 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11: 82-88. https://doi.org/10.1016/S0962-8924(00)01898-5
- Horne DS. 2006. Casein micelle structure: models and muddles. Curr. Opin. Colloid Interface Sci. 11: 148-153. https://doi.org/10.1016/j.cocis.2005.11.004
- Su D, Zhong Q. 2016. Formation of thymol nanoemulsions with combinations of casein hydrolysates and sucrose stearate. J. Food Eng. 179: 1-10. https://doi.org/10.1016/j.jfoodeng.2016.01.030
- Alongi J, Carletto RA, Bosco F, Carosio F, Blasio AD, Cuttica F, et al. 2014. Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym. Degrad. Stabil. 99: 111-117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016
- Rafiq S, Huma N, Pasha I, Sameen A, Mukhtar O, Khan MI. 2016. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas. J. Anim. Sci. 29: 1022-1028. https://doi.org/10.5713/ajas.15.0452
- Trott O, Olson A. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
- Abraham MJ, Murtola T, Schulz R, Smith JC, Hess B, Lindahl E. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2: 19-25.
- Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, et al. 2005. Protein identification and analysis tools on the expasy server. pp. 571-607. 11th Ed. Totowa NJ Hum Publication.
- Bendtsen JD, Nielsen H, von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-95. https://doi.org/10.1016/j.jmb.2004.05.028
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The phyre2 web portal for protein modeling prediction and analysis. Nat. Prot. 10: 845-858. https://doi.org/10.1038/nprot.2015.053
- Huang J, Rauscher S, Nawrocki G, et al. 2017. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 14: 71-73. https://doi.org/10.1038/nmeth.4067
- Wiederstein M, Sippl MJ. 2017. Prosa interactive web service for the recognition of errors in three dimensional structures of proteins. Nucleic Acid Res. 35: 407-410.
- Sippl MJ. 1993. Recognition of errors in three dimensional structures of proteins. Proteins 17: 355-362. https://doi.org/10.1002/prot.340170404
- DePristo MA, de Bakker PIW, Johnson RJK, Blundell TL. 2015. Crystallographic refinement by knowledge-based exploration of complex energy landscapes. Structure 13: 1311-1319. https://doi.org/10.1016/j.str.2005.06.008
- Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. 2003. Improved protein-ligand docking using GOLD. Proteins 52: 609-623. https://doi.org/10.1002/prot.10465
- Rahimnahal S, Shams M, Tarrahimofrad H, Mohammadi Y. 2020. Analysis to describe the catalytic critical residue of keratinase mojavensis using peptidase inhibitors: A docking-based bioinformatics study. J. Bas. Res. Med. Sci. 7: 13-28.
- Kandasamy S, Duraisamy S, Chinnappan S, Balakrishnan S, Thangasamy S, Muthusamy G, et al. 2018. Molecular modeling and docking of protease from Bacillus sp. for the keratin degradation. Biocatal. Agric. Biotechnol. 13: 95-104. https://doi.org/10.1016/j.bcab.2017.11.016
- Sulaiman NA, Mahadi NM, Ramly NZ. 2017. Substrate binding site of protease from Bacillus lehensis G1 by molecular docking. J. Academia UiTM. 5: 36-43.
- Jayalakshmi P, Krishnamoorthy G, Kumar R, Sivaman P. 2011. Docking conformation of Bacillus licheniformis keratinase enzyme and PMSF ligand T. Drug Invent. Today 3: 200-202.
- Shaikh M, Shafique M, Naz SA, Jabeen N. 2019. Streptomyces sp. MM-3 from rhizosphere of Psidium Guajava: A potential candidate for protease with dehairing properties. Pak. J. Bot. 51: 735-742.
- Kuntzel A, Stirtz T. 1958. Hair root studies. J. Am. Leather Chem. Assoc. 53: 445-466.
- Huang Q, Peng Y, Li X. 2003. Purification and characterization of extracellular alkaline serine protease with dehairing function from Bacillus pumilis. Curr. Microbiol. 43: 169-173. https://doi.org/10.1007/s00284-002-3850-2
- Zambare VP, Nilegaonkar SS, Kanekar PP. 2007. Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J. Microbiol. Biotechnol. 33: 1569-1574.
- Thanikaivelan P, Rao JR, Nair BU, Ramasami T. 2004. Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol. 22: 181-188. https://doi.org/10.1016/j.tibtech.2004.02.008
- Sivasubramanian S, Murali MB, Rajaram A, Puvanakrishna R. 2008. Ecofriendly lime and sulfide free enzymatic dehairing of skins and hides using a bacterial alkaline protease. Chemosphere 70: 1015-1024. https://doi.org/10.1016/j.chemosphere.2007.09.036
- Sattar H, Aman A, Javeed U, Qadar SAU. 2018. Polyacrylamide beads: Polymer entrapment increases the catalytic efficiency and thermal stability of protease. Mol. Catal. 446: 81-87. https://doi.org/10.1016/j.mcat.2017.12.022
- Miao J, Liu G, Luo Z, Xia Z, Liu F, Chen Y, et al. 2016. Calcium-binding peptides isolated from casein hydrolysates enhances intestinal calcium uptake. FASEB J. 30: 690-1015.