Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2016R1D1A1B01011421 and NRF2019R1A2C1003639). Haram Kong was supported by Kyonggi University's Graduate Research Assistantship 2021.
References
- Klein G. 2003. Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int. J. Food Microbiol. 88: 123-131. https://doi.org/10.1016/S0168-1605(03)00175-2
- Wheeler AL, Hartel PG, Godfrey DG, Hill JL, Segars WI. 2002. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J. Environ. Qual. 31: 1286-1293. https://doi.org/10.2134/jeq2002.1286
- Giraffa G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
- Franz CM, Holzapfel WH, Stiles ME. 1999. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47: 1-24. https://doi.org/10.1016/S0168-1605(99)00007-0
- Zheng B, Tomita H, Inoue T, Ike Y. 2009. Isolation of VanB-type Enterococcus faecalis strains from nosocomial infections: first report of the isolation and identification of the pheromoneresponsive plasmids pMG2200, Encoding VanB-type vancomycin resistance and a Bac41-type bacteriocin, and pMG2201, encoding erythromycin resistance and cytolysin (Hly/Bac). Antimicrob. Agents Chemother. 53: 735-747. https://doi.org/10.1128/AAC.00754-08
- Sava IG, Heikens E, Huebner J. 2010. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 16: 533-540. https://doi.org/10.1111/j.1469-0691.2010.03213.x
- Johnson AP. 1994. The pathogenicity of enterococci. J. Antimicrob. Chemother. 33: 1083-1089. https://doi.org/10.1093/jac/33.6.1083
- Burdychova R, Komprda T. 2007. Biogenic amine-forming microbial communities in cheese. FEMS Microbiol. Lett. 276: 149-155. https://doi.org/10.1111/j.1574-6968.2007.00922.x
- Munoz-Atienza E, Landeta G, de las Rivas B, Gomez-Sala B, Munoz R, Hernandez PE, et al. 2011. Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int. J. Food Microbiol. 146: 212-216. https://doi.org/10.1016/j.ijfoodmicro.2011.02.024
- Trivedi K, Borkovcova I, Karpiskova R. 2009. Tyramine production by enterococci from various foodstuffs: a threat to the consumers. Czech. J. Food Sci. 27: 357-360.
- Sarantinopoulos P, Kalantzopoulos G, Tsakalidou E. 2002. Effect of Enterococcus faecium on microbiological, physicochemical and sensory characteristics of Greek Feta cheese. Int. J. Food Microbiol. 76: 93-105. https://doi.org/10.1016/S0168-1605(02)00021-1
- Dhakal R, Bajpai VK, Baek KH. 2012. Production of gaba (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241. https://doi.org/10.1590/S1517-83822012000400001
- Canganella F, Paganini S, Ovidi M, Vettraino AM, Bevilacqua L, Massa S, et al. 1997. A microbiology investigation on probiotic pharmaceutical products used for human health. Microbiol. Res. 152: 171-179. https://doi.org/10.1016/S0944-5013(97)80009-2
- Jang M, Jeong DW, Lee JH. 2019. Identification of the predominant Bacillus, Enterococcus, and Staphylococcus species in meju, a spontaneously fermented soybean product. Microbiol. Biotechnol. Lett. 47: 1-5. https://doi.org/10.4014/mbl.1804.04021
- Kim HM, Chung DR, Cho SY, Huh K, Kang CI, Peck KR. 2020. Emergence of vancomycin-resistant Enterococcus faecium ST1421 lacking the pstS gene in Korea. Eur. J. Clin. Microbiol. Infect. Dis. 39: 1349-1356. https://doi.org/10.1007/s10096-020-03853-4
- Lim HS, Cha IT, Lee H, Seo MJ. 2016. Optimization of γ-aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Microbiol. Biotechnol. Lett. 44: 26-33. https://doi.org/10.4014/mbl.1512.12004
- Yu P, Ren Q, Wang X, Huang X. 2019. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochem. Eng. J. 141: 252-258. https://doi.org/10.1016/j.bej.2018.10.025
- Jeong M, Jeong DW, Lee JH. 2015. Safety and biotechnological properties of Enterococcus faecalis and Enterococcus faecium isolates from Meju. J. Korean Soc. Appl. Biol. Chem. 58: 813-820. https://doi.org/10.1007/s13765-015-0110-2
- Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, et al. 2011. Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J. Bacteriol. 193: 4672-4684. https://doi.org/10.1128/JB.00353-11
- Sarkar PK, Cook PE, Owens JD. 1993. Bacillus fermentation of soybeans. World J. Microbiol. Biotechnol. 9: 295-299. https://doi.org/10.1007/BF00383066
- Besson I, Creuly C, Gros JB, Larroche C. 1997. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Appl. Microbiol. Biotechnol. 47: 498-495.
- Jeong DW, Heo S, Lee B, Lee H, Jeong K, Her JY, et al. 2017. Effects of the predominant bacteria from meju and doenjang on the production of volatile compounds during soybean fermentation. Int. J. Food Microbiol. 262: 8-13. https://doi.org/10.1016/j.ijfoodmicro.2017.09.011
- Jeong DW, Jeong K, Lee H, Kim CT, Heo S, Oh Y, et al. 2020. Effects of Enterococcus faecium and Staphylococcus succinus starters on the production of volatile compounds during doenjang fermentation. LWT-Food Sci. Technol. 122: 108996. https://doi.org/10.1016/j.lwt.2019.108996
- Katz M, Medina R, Gonzalez S, Oliver G. 2002. Esterolytic and lipolytic activities of lactic acid bacteria isolated from ewe's milk and cheese. J. Food Prot. 65: 1997-2001. https://doi.org/10.4315/0362-028X-65.12.1997
- Ammor MS, Florez AB, van Hoek AH, de Los Reyes-Gavilan CG, Aarts HJ, Margolles A, et al. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 14: 6-15. https://doi.org/10.1159/000106077
- Singh KV, Coque TM, Weinstock GM, Murray BE. 1998. In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol. Med. Microbiol. 21: 323-331. https://doi.org/10.1111/j.1574-695X.1998.tb01180.x
- Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE. 2004. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect. Immun. 72: 3658-3663. https://doi.org/10.1128/IAI.72.6.3658-3663.2004
- Eaton TJ, Gasson MJ. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67: 1628-1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001
- Cariolato D, Andrighetto C, Lombardi A. 2008. Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19: 886-892. https://doi.org/10.1016/j.foodcont.2007.08.019
- Ladero V, Fernandez M, Calles-Enriquez M, Sanchez-Llana E, Canedo E, Cruz Martin MC, et al. 2012. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 30: 132-138. https://doi.org/10.1016/j.fm.2011.12.016
- Bhardwaj A, Gupta H, Iyer R, Naresh K, Malik RK. 2009. Tyramineproducing enterococci are equally detected on tyramine production medium, by quantification of tyramine by HPLC, or by tdc gene-targeted PCR. Dairy Sci. Technol. 89: 601-611. https://doi.org/10.1051/dst/2009040