Acknowledgement
This study was supported by 2020 Master's and Doctoral Researcher Fellowship of the National Institute of Forest Science in 2020.
References
- Baker, D.A., Gallego, N.C., Baker, F.S. 2012. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. Journal of Applied Polymer Science 124(1): 227-234. https://doi.org/10.1002/app.33596
- Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimo-lecular layers. Journal of the American Chemical Society 60(2): 309-319. https://doi.org/10.1021/ja01269a023
- Calvo-Flores, F.G., Dobado, J.A. 2010. Lignin as Renewable Raw Material. ChemSusChem 3: 1227-1235. https://doi.org/10.1002/cssc.201000157
- Conway, B.E. 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Klumer Academic/Plenum Publishers, New York.
- Chen, S., Xia, Y., Zhang, B., Chen, H., Chen, G., Tang, S. 2021. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. Journal of Hazardous Materials 408: 124956. https://doi.org/10.1016/j.jhazmat.2020.124956
- Dutta, S., Bhaumik, A., Wu, K.C.-W. 2014. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy and Environmental Science 7(11): 3574-3592. https://doi.org/10.1039/c4ee01075b
- Fatriasari, W., Nurhanzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
- Han, S.-Y., Park, C.-W., Lee, S.-H. 2017. Preparation of lignocellulose nanofiber by mechanical defibrillation after pretreatment using cosolvent of ionic liquid and DMF. Journal of the Korean Wood Science and Technology 45(3): 268-277. https://doi.org/10.5658/WOOD.2017.45.3.268
- Hatfield-Dodds, S., Schandl, H., Newth, D., Obersteiner, M., Cai, Y., Baynes, T., West, J., Havlik, P. 2017. Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies. Journal of Cleaner Production 144: 403-414. https://doi.org/10.1016/j.jclepro.2016.12.170
- Hong, C.-Y., Kim, S.-H., Park, S.-Y., Choi, J.-H., Cho, S.-M., Kim, M., Choi, I.-G. 2017. Catabolic pathway of lignin derived-aromatic compounds by whole cell of phanerochaete chrysosporium (ATCC 20696) with reducing agent. Journal of the Korean Wood Science and Technology 45(2): 168-181. https://doi.org/10.5658/WOOD.2017.45.2.168
- Hur, J.-H., Seo, M.-K., Kim, H.-Y., Kim, I.-J., Park, S.-J. 2012. Influence of KOH activation on electrochemical performance of coal tar pitch-based activated carbons for supercapacitor. Polymer 36(6): 756-760.
- Hwang, H., Choi, J.W. 2018, Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28. https://doi.org/10.5658/WOOD.2018.46.1.17
- Ibrahim, M.N.M., Ahmed-Haras, M.R., Sipaut, C.S., Aboul-Enein, H.Y., Mohamed, A.A. 2010. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydrate Polymers 80(4): 1102-1110. https://doi.org/10.1016/j.carbpol.2010.01.030
- Jiang, X., Guo, F., Jia, X., Liang, S., Peng, K., Qian, L. 2020. Synthesis of biomass-based porous graphitic carbon combining chemical treatment and hydrothermal carbonization as promising electrode materials for supercapacitors. Ionics 26: 3655-3668. https://doi.org/10.1007/s11581-020-03487-8
- Jung, M.-K., Kim, S.-K., Jung, D.-H., Peck., D.-H, Shin, J.-H., Shul, Y.-G., Yoon, S.-H. 2007. Characteristics of the catalysts using activated carbon nanofibers with KOH as the support of anode catalyst for direct methanol fuel cell. Carbon Letters 8(1): 37-42. https://doi.org/10.5714/CL.2007.8.1.037
- Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W. 2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
- Kang, D., Lee, Y., Park, K.H., Bae, J.S., Jo, S.M., Kim, S.S. 2021. Carbon fibers derived from oleic acidfunctionalized lignin via thermostabilization accelerated by UV irradiation. ACS Sustainable Chemistry & Engineering 9(14): 5204-5216. https://doi.org/10.1021/acssuschemeng.1c00574
- Kang, K.H., Kam, S.K., Lee, S.W., Lee, M.G. 2007. Adsorption characteristics of activated carbon prepared from waste ctrus peels by NaOH activation. Journal of the Environmental Sciences 16(11): 1279-1285. https://doi.org/10.5322/JES.2007.16.11.1279
- Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J. 2016. Towards lignin-based functional materials in a sustainable world. Green Chemistry 18(5): 1175-1200. https://doi.org/10.1039/c5gc02616d
- Kim, D., Cheon, J., Kim, J., Hwang, D., Hong, I., Kwon, O.H., Park, W.H., Cho, D. 2017. Extration and characterization of lignin from black liquor and preparation of biomass-based activated carbon there-from. Carbon letters 22: 81-88. https://doi.org/10.5714/CL.2017.22.081
- Kim, J.-Y., Heo, S., Park, S.Y., Choi, I.-G., Choi, J.W. 2017. Selective production of monomeric phenols from lignin via two-step catalytic cracking process. Journal of the Korean Wood Science and Technology 45(3): 278-287. https://doi.org/10.5658/WOOD.2017.45.3.278
- Kim, K.S., Park, S.J. 2011. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochimica Acta 56(3): 1629-1635. https://doi.org/10.1016/j.electacta.2010.10.043
- Kim, S.C., Hong, I.K. 1998. Manufacuring and physical properties of coal based activated carbon. Journal of Korean Society of Environmental Engineers 20(5): 745-754.
- Kubo, S., Uraki, Y., Sano, Y. 1998. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7-8): 1119-1124. https://doi.org/10.1016/S0008-6223(98)00086-4
- Kubo, S., Kadla, J.F. 2005. Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. Journal of Polymers and the Environment 13(2): 97-105. https://doi.org/10.1007/s10924-005-2941-0
- Lee, J.-H., Heo, G.-Y., Park, S.-J. 2012. Influence of activation temperature on electrochemical performances of styrenee-acrylonitrile based porous carbons. Polymer(Korea) 36(6): 739-744.
- Lili, G., Haiyan, L., Haibo, L., Xiuyun, S., Jianling, X., Dechen, L., Yang, L. 2004. KOH Direct activation for preparing acticated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chemical Research in Chinese Universities 30(3): 441-446. https://doi.org/10.1007/s40242-014-4059-1
- Lora, J., Glasser, W. 2002. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1): 39-48. https://doi.org/10.1023/A:1021070006895
- Min, C.-H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
- Nicholson, R.L., Hammerschmidt, R. 1992, Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30(1): 369-389. https://doi.org/10.1146/annurev.py.30.090192.002101
- Panapoy, M., Dankeaw, A., Ksapabutr, B. 2008. Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method. Thammasat International Journal of Science and Technology 13: 11-17.
- Park, S.-J., Kim, B.-J. 2005. Carbon materials for electrochemical capacitors. Carbon Science 6(4): 257-268.
- Phiri, J., Dou, J., Vuorinen, T., Gane, P.A.C., Maloney, T.C. 2019. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4(19): 18108-18117. https://doi.org/10.1021/acsomega.9b01977
- Qin, W., Kadla, J.F. 2011. Effect of organoclay reinforcement on lignin-based carbon fibers. Industrial and Engineering Chemistry Research 50(22): 12548-12555. https://doi.org/10.1021/ie201319p
- Rambabu, N., Azargohar, R., Dalai, A.K., Adjaye, J. 2013. Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Processing Technology 106: 501-510. https://doi.org/10.1016/j.fuproc.2012.09.019
- Renders, T., Van den Bosch, S., Koelewijn, S.F., Schutyser, W., Sels, B.F. 2017. Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy & Environmental Science 10(7): 1551-1557. https://doi.org/10.1039/c7ee01298e
- Sudo, K., Shimizu, K. 1992. A new carbon fiber from lignin. Journal of Applied Polymer Science 44(1): 127-134. https://doi.org/10.1002/app.1992.070440113
- Suhas, P.J., Carrott, M.M., Carrott, R. 2007. Lignin from natural adsorbent to activated carbon: A review. Bioresource Technology 98(12): 2301-2312. https://doi.org/10.1016/j.biortech.2006.08.008
- Wang, Y.G., Song, Y.F., Xia, Y. 2016. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chemical Society Reviews 45(21): 5925-5950. https://doi.org/10.1039/c5cs00580a
- Wang, Z., Shen, D., Wu, C., Gu, S. 2018. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry 20(22): 5031-5057. https://doi.org/10.1039/c8gc01748d
- Xia, K., Gao, Q., Jiang, H.J. 2008. Hierachical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13): 1718-1726. https://doi.org/10.1016/j.carbon.2008.07.018
- Youe, W.J., Lee, S.M., Lee, S.S., Lee, S.H., Kim, Y.S. 2016. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules 82: 497-504. https://doi.org/10.1016/j.ijbiomac.2015.10.022
- Youe, W.-J., Kim, S.J., Lee, S.-M., Chun, S.-J., Kang, J., Kim, Y.S. 2018. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors. International Journal of Biological Macromolecules 112: 943-950. https://doi.org/10.1016/j.ijbiomac.2018.02.048
- Zhai, Y., Dou, D., Zhao, P.F., Fulvio, R.T., Mayes, Dai, S. 2011, Carbon materials for chemical capacitive energy storage. Advanced Materials 23(42): 4828-4850. https://doi.org/10.1002/adma.201100984
- Zhang, Y., Liu, X., Wang, S., Li, L., Dou, S. 2017. Bio- nanotechnology in high-performance supercapacitors. Advanced Energy Materials 7(21): 1700592. https://doi.org/10.1002/aenm.201700592