DOI QR코드

DOI QR Code

국립공원 생물다양성 평가를 위한 산림성 조류 자연성 지수 적용

Application of Forest Bird Naturalness Index for Evaluating Biodiversity in National Parks in Korea

  • 최세웅 (목포대학교 환경교육과) ;
  • 장진 (국립공원공단 국립공원연구원) ;
  • 채희영 (국립공원공단 국립공원연구원) ;
  • 박진영 (국립생물자원관)
  • Choi, Sei-Woong (Department of Environmental Education, Mokpo National University) ;
  • Jang, Jin (National Park Research Institute, Korea National Park Service) ;
  • Chae, Hee-Young (National Park Research Institute, Korea National Park Service) ;
  • Park, Jin-Young (National Institute of Biological Resources)
  • 투고 : 2021.05.26
  • 심사 : 2021.06.11
  • 발행 : 2021.06.30

초록

이 연구는 국립공원에 서식하고 있는 조류를 대상으로 국립공원 생물다양성을 평가할 수 있는 지수를 개발하여 생물다양성이 서식지 변화나 환경변화로 인해 영향을 받는 것을 알아보기 위한 것이다. 산림성 조류로 두견목, 딱다구리목, 수리목, 매목, 비둘기목, 쏙독새목, 올빼미목, 참새목 등에 해당하는 112종에 대하여 5인의 전문가 의견을 통해 교란 민감도 값을 산출한 후 자연성 지수 값을 산출하였다. 교란 민감도는 긴꼬리딱새와 팔색조가 높았으며 까치, 직박구리, 멧비둘기는 가장 낮게 나타났으며 각 공원에서 기록된 개체수 합과는 역상관으로 나타났다. 조류 자연성 지수는 속리산에서 78.70, 월악산 68.30, 주왕산 60.64, 월출산이 49.09로 나타났으며 특정 개체수를 지닌 종이 사라지는 시나리오별로 전체 종 수와 Fisher's alpha, Shannon-Wiener 다양도지수(H'), 자연성 지수가 차이를 나타내었다. 자연성 지수는 희귀종에게 민감한 반응을 나타내었고 개체수가 많은 종으로만 구성되는 경우에도 지역별 차이를 나타내었다. 추후 전체 조류 종에 대한 교란 민감도 지수를 산출하여 지점별 그리고 시간에 따라 조류의 자연성 지수가 어떻게 변화하는가를 모니터링한다면 기후변화를 포함한 다양한 환경변화로 생물다양성이 어떻게 변화하는가를 나타내는 지표로 이용될 수 있을 것으로 기대한다.

We aimed to develop a naturalness index for forest-dwelling birds in four national parks in Korea and to simulate the effect of species loss on this naturalness index. Five bird specialists were asked to give 112 bird species a disturbance susceptibility score (DSS), and the naturalness index was calculated based on this. The 112 bird species represented 8 orders (Cuculiformes, Piciformes, Accipitriformes, Falconiformes, Columbiformes, Caprimulgiformes, Strigiformes, and Passeriformes). DSS was the highest for Terpsiphone atrocaudata and Pitta nympha, and lowest for Pica pica, Hypsipetes amaurotis, and Streptopelia orientalis. There was a significant negative relationship between a species' population number and its DSS. Among the four national parks, Mt. Songni had the highest naturalness index, followed by Mt. Wolak, Mt. Juwang, and Mt. Wolchul. We investigated the change in biodiversity indices under four scenarios, which assumed the extinction of species with less than 5 (Scenario 1), 10 (Scenario 2), 50 (Scenario 3), and 100 individuals (Scenario 4). The results showed that although all biodiversity indices decreased as the species loss increased, they all behaved differently. Fisher's alpha diversity decreased as the number of species proportionally decreased. There was almost no change in Shannon-Wiener H' index in Scenarios 1 and 2. The naturalness index showed increased sensitivity in Scenarios 1 and 4. Our future aims are to obtain the DSS for all forest-dwelling bird species, and to adopt the naturalness index to evaluate temporal and spatial changes in biodiversity.

키워드

과제정보

조류 교란성 지수를 작성하는데 도움을 주신 정옥식 박사, 김성현 박사, 홍길표 선생님께 감사를 드립니다.

참고문헌

  1. An, J.S. and S.W. Choi. 2021. Butterflies as an indicator group of riparian ecosystem assessment. Journal of Asia-Pacific Entomology 24: 195-200. https://doi.org/10.1016/j.aspen.2020.12.017
  2. Bibby, C.J. 1999. Making the most of birds as environmental indicators. Ostrich 70: 81-88. https://doi.org/10.1080/00306525.1999.9639752
  3. Boulinier, T., J.D. Nichols, J.E. Hines, J.R. Sauer, C.H. Flather and K.H. Pollock. 2001. Forest fragmentation and bird community dynamics: inference at regional scales. Ecology 82: 1159-1169. https://doi.org/10.1890/0012-9658(2001)082[1159:FFABCD]2.0.CO;2
  4. Canterbury, G.E., T.E. Martin, D.R. Petit, L.J. Petit and D.F. Bradford. 2000. Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conservation Biology 14: 544-558. https://doi.org/10.1046/j.1523-1739.2000.98235.x
  5. CBD. 2003. Monitoring and Indicators: Designing NationalLevel Monitoring Programmes and Indicators, Convention on Biological Diversity, Montreal.
  6. Collen, B. and E. Nicholson. 2014. Taking the measure of change. Science 346: 166-167. https://doi.org/10.1126/science.1255772
  7. Failing, L. and R. Gregory. 2003. Ten common mistakes in designing biodiversity indicators for forest policy. Journal of Environmental Management 68: 121-132. https://doi.org/10.1016/S0301-4797(03)00014-8
  8. Gibbons, D.W., J.B. Reid and R.A. Chapman. 1993. The New Atlas of Breeding Birds in Britain and Ireland: 1988-1991. T & AD Poyser, London.
  9. Gregory, R.D., D. Noble, R. Field, J. Marchant, M. Raven and D.W. Gibbons. 2003. Using birds as indicators of biodiversity. Ornis Hungarica 12-13: 11-24.
  10. Lawton, J.H., D.E. Bignell, B. Bolton, G.F. Bloemers, P. Eggleton, P.M. Hammond, M. Hodda, R.D. Holt, T.B. Larsen, N.A. Mawdsley, N.E. Stork, T.B. Srivastava and A.D. Watt. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72-75. https://doi.org/10.1038/34166
  11. Lee, D.K., C. Park and K. Oh. 2010. Forest Patch Characteristics and Their Contribution to Forest-Bird Diversity - Focus on Chungcheong Province Area. Journal of the Korean Society of Environmental Restoration Technology 13: 146-153.
  12. Magurran, A.E. 2013. Measuring biological diversity. John Wiley & Sons.
  13. Morrison, M.L., C.J. Ralph, J. Verner and J.R. Jehl Jr. 1990. Avian foraging: theory, methodology and applications. Cooper Ornithological Society, Los Angeles.
  14. National Park Service. 2020. Statistics of the National Park, Korea. National Park Service.
  15. Nelson, S.M. and D.C. Andersen. 1994. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores. The Southwestern Naturalist 39: 137-142. https://doi.org/10.2307/3672237
  16. Park, I.H., Y.H. Kim and K.J. Cho. 2012. Bird Species Diversity Analysis According to the Type of Forest Vegetation. Journal of the Korean Society of Environmental Restoration Technology 15: 43-52. https://doi.org/10.13087/kosert.2012.15.6.043
  17. Purvis, A. and A. Hector. 2000. Getting the measure of biodiversity. Nature 405: 212-219. https://doi.org/10.1038/35012221
  18. Rice, J.C. and M. Rochet. 2005. A framework for selecting a suite of indicators for fisheries management. ICES Journal of Marine Science 62: 516-527. https://doi.org/10.1016/j.icesjms.2005.01.003
  19. Scholes, R.J. and R. Biggs. 2005. A biodiversity intactness index. Nature 434: 45-49. https://doi.org/10.1038/nature03289
  20. Segan, D.B., K.A. Murray and J.E. Watson. 2016. A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions. Global Ecology and Conservation 5: 12-21. https://doi.org/10.1016/j.gecco.2015.11.002
  21. Singer, M.S., T.E. Farkas, C.M. Skorik and K.A. Mooney. 2012. Tritrophic interactions at a community level: effects of host plant species quality on bird predation of caterpillars. The American Naturalist 179: 363-374. https://doi.org/10.1086/664080
  22. Temple, S.A. and J.A. Wiens. 1989. Bird populations and environmental changes: can birds be bio-indicators. American Birds 43: 260-270.
  23. van Strien, A.J., L.L. Soldaat and R.D. Gregory. 2012. Desirable mathematical properties of indicators for biodiversity change. Ecological Indicators 14: 202-208. https://doi.org/10.1016/j.ecolind.2011.07.007
  24. Watermeyer, K.E., G. Guillera-Arroita, P. Bal, M.J. Burgass, L.M. Bland, B. Collen, C. Hallam, L.T. Kelly, M.A. McCarthy, T.J. Regan, S. Stevenson, B. Wintle and E. Nicholson. 2021. Using decision science to evaluate global biodiversity indices. Conservation Biology 35: 492-501. https://doi.org/10.1111/cobi.13574