DOI QR코드

DOI QR Code

Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste

고준위방사성폐기물 처분장 내 열-수리-역학-화학적 복합거동 해석을 위한 국제공동연구 DECOVALEX-2023에서 수행 중인 연구 과제 소개

  • Kim, Taehyun (Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Changsoo (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jung-Woo (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Sinhang (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kwon, Saeha (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Kwang-Il (Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Jung-Wook (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Chan-Hee (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Jin-Seop (Korea Atomic Energy Research Institute (KAERI))
  • Received : 2021.06.18
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

It is essential to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior in the engineered barrier system and natural barrier system to secure the high-level radioactive waste repository's long-term safety. The heat from the high-level radioactive waste induces thermal pressurization and vaporization of groundwater in the repository system. Groundwater inflow affects the saturation variation in the engineered barrier system, and the saturation change influences the heat transfer and multi-phase flow characteristics in the buffer. Due to the complexity of the coupled behavior, a numerical simulation is a valuable tool to predict and evaluate the THMC interaction effect on the disposal system and safety assessment. To enhance the knowledge of THMC coupled interaction and validate modeling techniques in geological systems. DECOVALEX, an international cooperation project, was initiated in 1992, and KAERI has participated in the projects since 2008 in Korea. In this study, we introduced the main contents of all tasks in the DECOVALEX-2023, the current DECOVALEX phase, to the rock mechanics and geotechnical researchers in Korea.

고준위방사성폐기물 처분장의 장기 안전성 확보를 위해서는 공학적방벽 및 천연방벽 내에서 발생하는 복잡한 열-수리-역학-화학적(THMC) 복합거동 해석에 대한 이해가 필수적이다. 특히 고준위방사성폐기물에서 발생하는 열로 인해 암반 및 완충재 내의 지하수에서 압력 증가 및 상변화가 발생하게 되며, 지하수의 유입으로 인해 공학적방벽 내 포화도가 변화하게 된다. 또한 포화도의 변화는 완충재 내에서의 열전달 및 다상 유동 특성에 영향을 미치게 된다. 따라서 복합거동 특성의 복잡성으로 인해 수치해석은 처분시스템에서의 THMC 복합거동 평가와 예측 및 안전성 평가에 있어 강점을 지니고 있으며, DECOVALEX 국제공동연구는 THMC 복합거동에 대한 이해도 증진 및 해석기법 검증을 목적으로 1992년부터 시작되었다. 국내에서는 2008년부터 한국원자력연구원이 지속적으로 참여하여 연구를 수행하고 있으며, 본 기술보고에서는 현재 진행 중인 DECOVALEX-2023의 주요 연구내용을 국내 암반 및 지반공학자들에게 소개하였다.

Keywords

Acknowledgement

The authors appreciate and thank the DECOVALEX-2023 Funding Organisations Andra, BASE, BGE, BGR, CAS, CNSC, COVRA, US DOE, ENRESA, ENSI, JAEA, KAERI, NWMO, RWM, SURAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the Funding Organisations. This research was also supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E1A1085193) and the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, GP2020-010) funded by the Ministry of Science and ICT, Korea.

References

  1. Alonso, E.E., J. Alcoverro, et al. and P. Jussila, 2005, The FEBEX benchmark test: case definition and comparison of modelling approaches, International Journal of Rock Mechanics and Mining Sciences, 42, 611-638. https://doi.org/10.1016/j.ijrmms.2005.03.004
  2. Amiguet, J.-L., 1985, Grimsel Test Site. Felskennwerte von intaktem Granit. Zusammenstellung felsmechanischer Laborresultate diverser granitischer Gesteine, NAGRA, NIB 85-08.
  3. Andersson, C., 2012, DECOVALEX-2011 Project: Final report of Task B. Modelling an in situ spalling experiment in hard rock, Royal Institute of Technology, Stockholm, Sweden.
  4. Beaucaire, C., E. Tertre, E. Ferrage, B. Grenut, S. Pronier and B. Made, 2012, A thermodynamic model for the prediction of pore water composition of clayey rock at 25 and 80C d comparison with results from hydrothermal alteration experiments. Chemical Geology, 334, 62-76. https://doi.org/10.1016/j.chemgeo.2012.09.040
  5. Benisch, K., B. Graupner and S. Bauer, 2013, The coupled OpenGeoSys-Eclipse simulator for simulation of CO2 storage-code comparison for fluid flow and geomechanical processes, Energy Procedia, 37, 3663-3671. https://doi.org/10.1016/j.egypro.2013.06.260
  6. Birkholzer, J.T., C.-F. Tsang, A.E. Bond, J.A. Hudson, L. Jing and O. Stephansson, 2019, 25 years of DECOVALEX- Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, International Journal of Rock Mechanics and Mining Sciences, 122, 103995. https://doi.org/10.1016/j.ijrmms.2019.03.015
  7. Borgesson L, M. Chijimatsu T. Fujita, T.S. Nguyen, J. Rutqvist and L. Jing, 2001, Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses. International Journal of Rock Mechanics and Mining Sciences, 38, 95-104. https://doi.org/10.1016/S1365-1609(00)00067-8
  8. Cho, W.-J, J.-O. Lee and S. Kwon, 2010, Analysis of thermo-hydro-mechanical process in the engineered barrier system of a high-level waste repository, Nuclear Engineering And Design, 240, 1688-1698. https://doi.org/10.1016/j.nucengdes.2010.02.027
  9. Cuss, R., J. Harrington, R. Giot and C. Auvray, 2014, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, 400, 507-519.
  10. Daniels, K.A. and J.F. Harrington, 2017, The response of compact bentonite during a 1D gas flow test, British Geological Survey Open Report, OR/17/067, British Geological Survey, s.l.
  11. DECOVALEX-2023, 2021, Task A description, accessed June 14 2021. available from [https://decovalex.org/D-2023/task-a.html]
  12. De La Vaissiere R., J. Talandier, G. Armand, M.N. Vu and F.H. Cornet, 2019, From two-phase flow to gas fracturing into Callovo-Oxfordian claystone, 53rd U.S. Rock Mechanics/Geomechanics Symposium, June 23-29 2019. New York City, New York. Paper number: ARMA-2019-1723.
  13. ENRESA, 2000, FEBEX project. Full-scale Engineered Barriers Experiment for a Deep Geological Repository for High Level Radioactive Waste in Crystalline Host Rock. Madrid: Final report.
  14. Finley, S.J., D.J. Hanson and R. Parsons, 1992, Small-Scale Brine Inflow Experiments - Data Report Through 6/6/91, SAND91-1956, Albuquerque, NM: Sandia National Laboratories, 185p.
  15. Fraser-Harris, A.P., C.I. McDermott, G.D. Couples, K. Edlmann, A. Lightbody, A. Cartwright-Taylor, J.E. Kendrick, F. Brondolo, M. Fazio and M. Sauter, 2020, Experimental investigation of hydraulic fracturing and stress sensitivity of fracture permeability under changing polyaxial stress conditions. Journal of Geophysical Research: Solid Earth, 125, e2020JB020044. https://doi.org/10.1029/2020JB020044.
  16. Garitte, B., H. Shao, et al and J.D. Nichon, 2017, Evaluation of the predictive capability of coupled thermo-hydromechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory, Environmental Earth Sciences, 76:64. https://doi.org/10.1007/s12665-016-6367-x
  17. Gens, A., L.do N. Guimaraes, S. Olivella and M. Sanchez, 2010, Modelling thermo-hydro-mechano-chemical interactions for nuclear waste disposal, Journal of Rock Mechanics and Geotechnical Engineering, 2(2), 97-102. https://doi.org/10.3724/sp.j.1235.2010.00097
  18. Graham, C.C., J.F. Harrington, R.J. Cuss and P. Sellin, 2012, Gas migration experiments in bentonite: implications for numerical modelling, Mineralogical Magazine, 76(8), 3279-3292. https://doi.org/10.1180/minmag.2012.076.8.41
  19. Guimaraes, L.do N., A. Gens, M. Sanchez and S. Olivella, 2006, THM and reacvitve transport analysis of expansive clay barrier in radioactive waste isolation, Communications in Numerical Methods in Engineering, 22, 849-859. https://doi.org/10.1002/cnm.852
  20. Harrington, J.F. and S.T. Horseman, 2003, Gas migration in KBS-3 buffer bentonite: sensitivity of test parameters to experimental boundary conditions. Report TR-03-02. Svensk Karbranslehantering AB (SKB), Stockholm, Sweden.
  21. Horseman, S.T., J.F. Harrington and P. Sellin, 1999, Gas migration in clay barriers, Engineering Geology, 54, 139-149. https://doi.org/10.1016/S0013-7952(99)00069-1
  22. JNC (Japan Nuclear Cycle Development Institute), 2000. H12 Project to establish the scientific and technical basis for HLW disposal in Japan, Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan, Supporting report 2: Repository design and engineering technology, JNC TN1410-2000-003.
  23. Kim, M.-J., S.-R. Lee, S. Yoon, J.-S. Jeon and M.-S. Kim, 2018, Effect of thermal properties of bentonite buffer on temperature variation, Journal of the Korean Geotechnical Society, 34(1), 17-24. https://doi.org/10.7843/kgs.2018.34.1.17
  24. Kolditz, O., C. McDermott and J.S. Yoon, 2020, DECOVALEX-2023 Task G Introduction. Presented in DECOVALEX-2023 2nd Workshop, November 16-20 2020, Virtual conference.
  25. Kuhlman, K., S. Otto, P. Stauffer and Y. Wu, 2021, Brine availability test in salt (BATS) extended paln for experiments at the Waste Isolation Pilot Plant (WIPP), SAND2021-3497R, Albuquerque, NM: Sandia National Laboratories, 24p.
  26. Kwon, S., W.-J. Cho and J.-W. Choi, 2007, Status of the international cooperation project, DECOVALEX for THM coupling analysis, Journal of the Korean Radioactive Waste Society, 5(4), 323-338.
  27. Lee, C., W.-J. Cho, J. Lee and G.Y. Kim, 2019, Numerical analysis of coupled thermo-hydro-mechanical behavior at Korean reference disposal system using TOUGH2-MP/FLAC3D simulator, Journal of Fuel Cycle and Waste Technology, 2019, 17(2), 183-202. https://doi.org/10.7733/jnfcwt.2019.17.2.183
  28. Lee, C., J. Lee, M. Kim and G.Y. Kim, 2020a, Implementation of Barcelona basic model into TOUGH2-MP/FLAC3D, Tunnel and Underground Space, 30(1), 39-62. https://doi.org/10.7474/TUS.2020.30.1.039
  29. Lee, C., T. Kim, J. Lee, J.-W. Park, S. Kwon and J.-S Kim, 2020b, Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019, Tunnel and Underground Space, 30(4), 271-305. https://doi.org/10.7474/TUS.2020.30.4.271
  30. Lee, C., J. Lee and G.-Y. Kim, 2021, Numerical analysis of coupled hydro-mechanical and thermo-hydro-mechanical behavior in buffer materials at a geological repository for nuclear waste: Simulation of EB experiment at Mont Terri URL and FEBEX at Grimsel test site using Barcelona basic model, International Journal of Rock Mechanics and Mining Sciences, 139, 1-22.
  31. McDermott, C.I., A. Fraser-Harris, M. Sauter, G.D. Couples, K. Edlmann, O. Kolditz, A. Lightbody, J. Somerville and W. Wang, 2018, New experimental equipment recreating geo-reservoir conditions in large, fractured, porous samples to investigate coupled thermal, hydraulic and polyaxial stress processes. Scientific Reports, 8(1), 14549. https://doi.org/10.1038/s41598-018-32753-z
  32. Mills, M., K. Kuhlman, E. Matteo, C. Herrick, M. Nemer, J. Heath, Y. Xiong, C. Lopez, P. Stauffer, H. Boukhalfa, E. Guiltinan, T. Rahn, D. Weaver, B. Dozier, S. Otto, J. Rutqvist, Y. Wu, M. Hu and D. Crandall, 2019. Salt Heater Test (FY19), SAND2019-10240R, Albuquerque, NM: Sandia National Laboratories, 61p.
  33. NAGRA, 2019, Implementation of the Full-scale Emplacement experiment at Mont Terri: Design, construction and preliminary results, Technical report 15-02, National Cooperative for the Disposal of Radioactive Waste, 202p.
  34. Nardi, A., A. Idiart, P. Trinchero, L.M. de Vries and J. Molinero, 2014, Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry, Computers and Geosciences, 69, 10-21. https://doi.org/10.1016/j.cageo.2014.04.011
  35. Ohno, H., Y. Takayama and K. Tanai, 2018, Full-scale engineered barrier system experiment at Horonobe URL. Presented in DECOVALEX-2019 7th Workshop, April 9-12 2018, Prague, Czech Republic.
  36. Park, C.H., T. Kim, E.-S. Park, Y.-B. Jung and E.-S. Bang, 2019, Development and verification of OGSFLAC simulator for hydro-mechanical coupled analysis: Single-phase fluid flow analysis, Tunnel and Underground Space, 29(6), 468-479. https://doi.org/10.7474/TUS.2019.29.6.468
  37. Park, J.W., C.H. Park, J.S. Yoon and C. Lee, 2020, Grain-based distinct element modelling of the mechanical behavior of a single fracture embedded in rock: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel & Underground Space, 30(6), 573-590. https://doi.org/10.7474/TUS.2020.30.6.573
  38. Rutqvist, J., L. Borgesson, et al. and C.-F. Tsang, 2001, Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine - comparison of field results to predictions of four finite element codes, International Journal of Rock Mechanics and Mining Sciences, 38, 129-142. https://doi.org/10.1016/S1365-1609(00)00069-1
  39. Sanchez, M., A. Gens and L. Guimaraes, 2012, Thermal-hydraulic-mechanical (THM) behaviour of a large-scale in situ heating experiment during cooling and dismantling, Canadian Geotechnical Journal, 49(10), 1169-1195. https://doi.org/10.1139/t2012-076
  40. Sugita, Y., S. Kwon, C. Lee, J. Massmann, P.-Z. Pan, J. Rutqvist, 2016, DECOVALEX-2015 Project: Task B2 Final Report. Stockholm, Sweden: Royal Institute of Technology, 35-36.
  41. Sugita, Y., 2021, Task D summary: Full-scale engineered barrier system experiment at Horonobe URL. Presented in DECOVALEX-2023 3rd Workshop, April 26-30 2021, Prague, Virtual conference.
  42. Sneddon, I.N. and M. Lowengrub, 1969, Crack problems in the classical theory of elasticity, John Willey & Sons, New York.
  43. Zhuang, L., S.G. Jung, M. Diaz, K.Y. Kim, H. Hofmann, K.B. Min, A. Zang, O. Stephansson, G. Zimmermann and J.S. Yoon, 2020, Laboratory true triaxial hydraulic fracturing of granite under six fluid injection schemes and grain-scale fracture observations. Rock Mechanics and Rock Engineering, 53, 4329-4344. https://doi.org/10.1007/s00603-020-02170-8