DOI QR코드

DOI QR Code

Developmental toxicity of dimethachlor during zebrafish embryogenesis mediated by apoptosis and oxidative stress

  • An, Garam (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Park, Hahyun (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Song, Gwonhwa (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lim, Whasun (Department of Food and Nutrition, College of Science and Technology, Kookmin University)
  • Received : 2020.12.07
  • Accepted : 2021.01.06
  • Published : 2021.03.31

Abstract

Dimethachlor is a synthetic herbicide, belonging to the chloroacetanilide group, that inhibits the undesirable growth of weeds via the suppression of very long-chain fatty acid synthesis. Although dimethachlor has been shown to run off from agricultural fields into aquatic ecosystems, the toxicity of dimethachlor on aquatic invertebrates and vertebrates is unknown. In our study, we assessed the toxicity of dimethachlor on developing zebrafish embryos by analyzing viability, hatching ability, and phenotypic changes. Embryonic viability decreased from 48 h post-fertilization (hpf) at the highest concentration of dimethachlor. Decreased hatching ratio, shortened body length, and pathological changes in the eye, heart, and yolk sac were observed at sub-lethal concentrations. Additionally, dimethachlor increased the number of apoptotic cells and level of reactive oxygen species 120 hpf. Our results indicate that dimethachlor may act as an anti-developmental toxicant when accumulated in an aquatic environment.

Keywords

Acknowledgement

This research was supported by a grant of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) [grant number 2018R1C1B6009048].

References

  1. Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ. 2000. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ. 248:123-133. https://doi.org/10.1016/S0048-9697(99)00536-7
  2. Capriello T, Grimaldi MC, Cofone R, D'Aniello S, Ferrandino I. 2019. Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish. Chemosphere 222:243-249. https://doi.org/10.1016/j.chemosphere.2019.01.140
  3. Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Schneider F, Sturbois B. 1994. Biosynthesis of very long chain fatty acids in higher plants. Prog. Lipid Res. 33:55-69. https://doi.org/10.1016/0163-7827(94)90009-4
  4. Chahardehi AM, Arsad H, Lim V. 2020. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants (Basel) 9:1345. https://doi.org/10.3390/plants9101345
  5. Chakraborty C, Sharma AR, Sharma G, Lee SS. 2016. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology 14:65. https://doi.org/10.1186/s12951-016-0217-6
  6. Chen X, Dong Q, Chen Y, Zhang Z, Huang C, Zhu Y, Zhang Y. 2017. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish. Environ. Pollut. 224:7-15. https://doi.org/10.1016/j.envpol.2017.03.011
  7. Cole LK and Ross LS. 2001. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240:123-142. https://doi.org/10.1006/dbio.2001.0432
  8. Eum J, Kwak J, Kim HJ, Ki S, Lee K, Raslan AA, Park OK, Chowdhury MA, Her S, Kee Y, Kwon SH, Hwang BJ. 2016. 3D visualization of developmental toxicity of 2,4,6-trinitrotoluene in zebrafish embryogenesis using light-sheet microscopy. Int. J. Mol. Sci. 17:1925. https://doi.org/10.3390/ijms17111925
  9. He JH, Gao JM, Huang CJ, Li CQ. 2014. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 42:35-42. https://doi.org/10.1016/j.ntt.2014.01.006
  10. Huang L, Wang C, Zhang Y, Wu M, Zuo Z. 2013. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J. Hazard. Mater. 261:172-180. https://doi.org/10.1016/j.jhazmat.2013.07.030
  11. Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH. 2003. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag. Sci. 59:1101-1110. https://doi.org/10.1002/ps.735
  12. Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH. 2019. Trimethyltin chloride induces reactive oxygen speciesmediated apoptosis in retinal cells during zebrafish eye development. Sci. Total Environ. 653:36-44. https://doi.org/10.1016/j.scitotenv.2018.10.317
  13. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. tages of embryonic development of the zebrafish. Dev. Dyn. 203:253-310. https://doi.org/10.1002/aja.1002030302
  14. Lewis KA, Tzilivakis J, Warner DJ, Green A. 2016. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22:1050-1064. https://doi.org/10.1080/10807039.2015.1133242
  15. Liang J, Jin W, Li H, Liu H, Huang Y, Shan X, Li C, Shan L, Efferth T. 2016. In vivo cardiotoxicity induced by sodium aescinate in zebrafish larvae. Molecules 21:190. https://doi.org/10.3390/molecules21030190
  16. Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W. 1996. Mutations affecting development of the zebrafish retina. Development 123:263-273. https://doi.org/10.1242/dev.123.1.263
  17. McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. 2011. Developmental toxicity screening in zebrafish. Birth Defects Res. C Embryo Today 93:67-114. https://doi.org/10.1002/bdrc.20210
  18. Park S, Song G, Lim W. 2020. Anti-developmental effects of imazosulfuron on zebrafish embryos during development. J. Anim. Reprod. Biotechnol. 35:28-34. https://doi.org/10.12750/JARB.35.1.28
  19. Razaghi B, Steele SL, Prykhozhij SV, Stoyek MR, Hill JA, Cooper MD, McDonald L, Lin W, Daugaard M, Crapoulet N, Chacko S, Lewis SM, Scott IC, Sorensen PHB, Berman JN. 2018. hace1 Influences zebrafish cardiac development via ROS-dependent mechanisms. Dev. Dyn. 247:289-303. https://doi.org/10.1002/dvdy.24600
  20. Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T. 2020. AHRmediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci. Total Environ. 719:135097. https://doi.org/10.1016/j.scitotenv.2019.135097
  21. Sant KE and Timme-Laragy AR. 2018. Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo. Curr. Environ. Health Rep. 5:125-133. https://doi.org/10.1007/s40572-018-0183-2
  22. Tu W, Niu L, Liu W, Xu C. 2013. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicol. Environ. Saf. 89:189-195. https://doi.org/10.1016/j.ecoenv.2012.11.031
  23. von Wettstein-Knowles PM. 1993. Waxes, cutin and suberin. In: Moore TS (Ed.), Lipid Metabolism in Plants. CRC Press, Boca Raton, pp. 127-166.
  24. Yang X, Guschina IA, Hurst S, Wood S, Langford M, Hawkes T, Harwood JL. 2010. The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manag. Sci. 66:794-800. https://doi.org/10.1002/ps.1944
  25. Zakaria ZZ, Benslimane FM, Nasrallah GK, Shurbaji S, Younes NN, Mraiche F, Da'as SI, Yalcin HC. 2018. Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. Biomed Res. Int. 2018:1642684. https://doi.org/10.1155/2018/1642684