DOI QR코드

DOI QR Code

Isoprocarb induces acute toxicity in developing zebrafish embryos through vascular malformation

  • Park, Hahyun (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Song, Gwonhwa (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lim, Whasun (Department of Food and Nutrition, College of Science and Technology, Kookmin University)
  • 투고 : 2020.12.07
  • 심사 : 2021.01.10
  • 발행 : 2021.03.31

초록

In this study, the potential toxicity of isoprocarb was demonstrated using zebrafish embryos. We treated isoprocarb (0, 29, and 58 mg/L) to the zebrafish embryos for 72 h then, we estimated morphological changes and apoptotic cell numbers. The increasing extent of apoptosis from the anterior to posterior region of developing zebrafish larvae was correlated with toxicity in the overall development process, including growth and normal organ formation. The appearance of abnormalities in the isoprocarb-treated groups in comparison to normal developing zebrafish larvae was verified using quantitative image analysis based on ImageJ software program. The vascular system comprising a complex interconnection of blood vessels was visualized in vessel-fluorescent transgenic zebrafish (fli1:eGFP). The main vasculature was malformed on isoprocarb treatment, and this was also related to cardiac defects. Taken together, normal embryonic development in zebrafish was interrupted owing to the acute toxicity of isoprocarb.

키워드

과제정보

This research was supported by a grant of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) [grant number 2018R1C1B6009048].

참고문헌

  1. Assis CRD, Bezerra RS, Carvalho LB Jr. 2011. Fish cholinesterases as biomarkers of organophosphorus and carbamate pesticides. In: Stoytcheva M (Ed.), Pesticides in the Modern World-Pests Control and Pesticides Exposure and Toxicity Assessment. InTech, London, pp. 253-278.
  2. Barzi NV, Eftekhari Z, Doroud D, Eidi A. 2020. DNA methylation changes of apoptotic genes in organogenesis stage of mice embryos by maternal chlorpyrifos induction. Environ. Toxicol. 35:794-803. https://doi.org/10.1002/tox.22915
  3. Bhagat J, Zang L, Nishimura N, Shimada Y. 2020. Zebrafish: an emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ. 728:138707. https://doi.org/10.1016/j.scitotenv.2020.138707
  4. Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. 2020. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol. 33:95-118. https://doi.org/10.1021/acs.chemrestox.9b00335
  5. Childs S, Chen JN, Garrity DM, Fishman MC. 2002. Patterning of angiogenesis in the zebrafish embryo. Development 129:973-982. https://doi.org/10.1242/dev.129.4.973
  6. Costa LG, Giordano G, Guizzetti M, Vitalone A. 2008. Neurotoxicity of pesticides: a brief review. Front. Biosci. 13:1240-1249. https://doi.org/10.2741/2758
  7. Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Chen YL, Pei DS. 2014. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 33:11-17. https://doi.org/10.1002/etc.2406
  8. El-Nahhal Y. 2018. Toxicity of some aquatic pollutants to fish. Environ. Monit. Assess. 190:449. https://doi.org/10.1007/s10661-018-6830-0
  9. Frazier LM. 2007. Reproductive disorders associated with pesticide exposure. J. Agromedicine 12:27-37. https://doi.org/10.1300/J096v12n01_04
  10. Gallo D, Merendino A, Keizer J, Vittozzi L. 1995. Acute toxicity of two carbamates to the Guppy (Poecilia reticulata) and the Zebrafish (Brachydanio rerio). Sci. Total Environ. 171:131-136. https://doi.org/10.1016/0048-9697(95)04681-X
  11. Jin Y, Zheng S, Fu Z. 2011. Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol. 30:1049-1054. https://doi.org/10.1016/j.fsi.2011.02.001
  12. Lammert E, Cleaver O, Melton D. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science 294:564-567. https://doi.org/10.1126/science.1064344
  13. Leung MCK and Meyer JN. 2019. Mitochondria as a target of organophosphate and carbamate pesticides: revisiting common mechanisms of action with new approach methodologies. Reprod. Toxicol. 89:83-92. https://doi.org/10.1016/j.reprotox.2019.07.007
  14. Li YF, Canario AVM, Power DM, Campinho MA. 2019. Ioxynil and diethylstilbestrol disrupt vascular and heart development in zebrafish. Environ. Int. 124:511-520. https://doi.org/10.1016/j.envint.2019.01.009
  15. Mesnage R and Antoniou MN. 2018. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front. Public Health 5:361. https://doi.org/10.3389/fpubh.2017.00361
  16. Nijoukubo D, Adachi H, Kitazawa T, Teraoka H. 2020. Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzop-dioxin in pre-cardiac edema formation in larval zebrafish. Chemosphere 254:126808. https://doi.org/10.1016/j.chemosphere.2020.126808
  17. Park S, Song G, Lim W. 2020. Anti-developmental effects of imazosulfuron on zebrafish embryos during development. J. Anim. Reprod. Biotechnol. 35:28-34. https://doi.org/10.12750/JARB.35.1.28
  18. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931-946. https://doi.org/10.1016/j.cell.2006.12.044
  19. Rahman MF, Siddiqui MK, Mahboob M, Mustafa M. 1990. Haematological and hepatotoxic effects of isoprocarb in chicken. J. Appl. Toxicol. 10:187-192. https://doi.org/10.1002/jat.2550100308
  20. Saito H, Iwami S, Shigeoka T. 1991. In vitro cytotoxicity of 45 pesticides to goldfish GF-Scale (GFS) cells. Chemosphere 23:525-537. https://doi.org/10.1016/0045-6535(91)90202-O
  21. Staudt D and Stainier D. 2012. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 46:397-418. https://doi.org/10.1146/annurev-genet-110711-155646
  22. Teraoka H, Okuno Y, Nijoukubo D, Yamakoshi A, Peterson RE, Stegeman JJ, Kitazawa T, Hiraga T, Kubota A. 2014. Involvement of COX2-thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish. Aquat. Toxicol. 154:19-26. https://doi.org/10.1016/j.aquatox.2014.04.025
  23. Wang C, Lu G, Cui J. 2012. Responses of AChE and GST activities to insecticide coexposure in Carassius auratus. Environ. Toxicol. 27:50-57. https://doi.org/10.1002/tox.20612
  24. Wang C, Lu G, Cui J, Wang P. 2009. Sublethal effects of pesticide mixtures on selected biomarkers of Carassius auratus. Environ. Toxicol. Pharmacol. 28:414-419.
  25. Watkins SC, Maniar S, Mosher M, Roman BL, Tsang M, St Croix CM. 2012. High resolution imaging of vascular function in zebrafish. PLoS One 7:e44018. https://doi.org/10.1371/journal.pone.0044018
  26. Xu L, Granger C, Dong H, Mao Y, Duan S, Li J, Qiang Z. 2020. Occurrences of 29 pesticides in the Huangpu River, China: highest ecological risk identified in Shanghai metropolitan area. Chemosphere 251:126411. https://doi.org/10.1016/j.chemosphere.2020.126411
  27. Zhang X, Liu L, Cui G, Song S, Kuang H, Xu C. 2019. Preparation of an anti-isoprocarb monoclonal antibody and its application in developing an immunochromatographic strip assay. Biomed. Chromatogr. 33:e4660.
  28. Zhou Q and Fang Z. 2015. Graphene-modified TiO2 nanotube arrays as an adsorbent in micro-solid phase extraction for determination of carbamate pesticides in water samples. Anal. Chim. Acta 869:43-49. https://doi.org/10.1016/j.aca.2015.02.019