DOI QR코드

DOI QR Code

Design and Characterization of Ascorbyl Glucoside loaded Solid Lipid Nanoparticles to improve skin penetration

피부 투과 개선을 위한 고형지질나노입자내 Ascorbyl glucoside 봉입 설계 및 특성화

  • Yeo, Sooho (College of Pharmacy, Chung-Ang University)
  • Received : 2021.06.07
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

The aim of the present study was to design ascorbyl glucoside (AG) loaded solid lipid nanoparticles (SLNs) to improve skin penetration of AG. AG loaded SLNs were prepared using double emulsion method. The prepared AG loaded SLNs investigated particle characteristics (particle size, polydispersity index, zeta potential, loading capacity). Skin penetration study was carried out using SkinEthic RHE as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs were 172.65 - 347.19 nm and -22.90 - -41.20 mV, respectively. The loading capacity of AG loaded SLNs demonstrated that loading efficiency and loading amount were ranged from 44.18% to 57.77% and 12.83% to 16.15%, respectively. The results of penetration showed that all SLNs enhanced the skin penetration of AG and the amount of AG from SLNs were approximately 3.7 - 7.4 times higher than that from AG solution. Therefore, AG loaded SLN might be a promising topical drug delivery system.

본 연구에서는 피부 미백 개선 기능성 화장품 소재이자 친수성 소재인 ascorbyl glucoside(AG)의 피부 투과율을 개선시키기 위해 고형지질나노입자(SLN)을 설계하였다. AG는 이중 에멀젼 가온 용융유화법으로 SLN 내에 봉입하였다. 제조 된 AG 봉입 SLN의 입자크기, 다분산 지수, 제타전위, 봉입율등의 입자의 물리화학적 특성을 평가하였다. 피부 투과시험의 경우 인체 유래 인조 피부 조직 모델 중 SkinEthic RHE를 사용하였다. 제조 된 AG 봉입 SLN의 평균 입자크기는 172.65 - 347.19 nm 이었고, 평균 제타전위는 -22.90 - -41.20 mV이었다. SLN 내 AG의 평균 봉입효율은 44.18 - 57.77%이었고, 평균 봉입율은 12.83 - 16.15%이었다. AG 봉입 SLN의 피부 투과 결과는 SLN을 적용하였을 때가 적용하지 않을 때 보다 약 3.7 - 7.4 배 피부 투과율이 개선되었다. 따라서, 본 연구에서 제조 된 SLN은 AG의 국소약물전달시스템으로 사용하는데 유용할 것이다.

Keywords

References

  1. T. Pillaiyar, M. Manickam, V. Namasivayam, "Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors", Journal of enzyme inhibition and medicinal chemistry, Vol.32. No.1 pp. 403-425, (2017) https://doi.org/10.1080/14756366.2016.1256882
  2. M. V. Trinidad, M. L. Antonio, C. B. Carlos, R. T. Andrea, M. L. Alejandro, A. S. Salvador, "Impact of Gloves and Mask Use on Epidermal Barrier Function in Health Care Workers", Dermatitis, Vol.32. No.1 pp. 57-62. (2021) https://doi.org/10.1097/DER.0000000000000682
  3. J. S. Jeon, H. T. Kim, M. G. Kim, M. S. Oh, S. R. Hong, M. H. Yoon, S. M. Cho, H. C. Shin, J. H. Shim, A. Ramadan, A. M. Abd El-Aty, "Simultaneous Determination of Water-soluble Whitening Ingredients and Adenosine in Different Cosmetic Formulations by High-performance Liquid Chromatography coupled with Photodiode Array Detection", International journal of cosmetic science, Vol.38. No.3 pp. 286-293, (2016) https://doi.org/10.1111/ics.12292
  4. N. Butwong, T. Kunawong, J. H. Luong, "Simultaneous Analysis of Hydroquinone, Arbutin, and Ascorbyl Glucoside Using a Nanocomposite of Ag@ AgCl Nanoparticles, Ag2S Nanoparticles, Multiwall Carbon Nanotubes, and Chitosan", Nanomaterials, Vol.10. No.8 pp. 1583-1596, (2020) https://doi.org/10.3390/nano10081583
  5. S. C. Huang, C. C. Lin, M. C. Huang, K. C. Wen, "Simultaneous Determination of Magnesium Ascorbyl Phosphate, Ascorbyl Glucoside, Kojic Acid, Arbutin and Hydroquinone in Skin Whitening Cosmetics by HPLC", Journal of Food and Drug Analysis, Vol.12. No.1 pp. 13-18, (2004)
  6. J. S. Lucks, R. H. Muller, B. Konig, "Solid lipid nanoparticles (SLN)-an Alternative Parenteral Drug Carrier System", European Journal of Pharmaceutics and Biopharmaceutics, Vol.38. No.33, (1992)
  7. U. Gonullu, M. Uner, G. Yener, E. F. Karaman, Z. Aydogmus, "Formulation and Characterization of Solid Lipid Nanoparticles, Nanostructured Lipid Carriers and Nanoemulsion of Lornoxicam for Transdermal Delivery" Acta Pharmaceutica, Vol.65. No.1 pp. 1-13, (2015) https://doi.org/10.1515/acph-2015-0009
  8. L. Mitri, R. Shegokar, S. Gohla, C. Anselmi, R. H. Muller, "Lipid Nanocarriers for Dermal Delivery of Lutein: Preparation, Characterization, Stability and Performance", International Journal of Pharmaceutics, Vol.414. No.1-2 pp. 267-275, (2011) https://doi.org/10.1016/j.ijpharm.2011.05.008
  9. C. Lotte, C. Patouillet, M. Zanini, A. Messager, R. Roguet, "Permeation and Skin Absorption: Reproducibility of Various Industrial Reconstructed Human Skin Models", Skin Pharmacology and Physiology, Vol.15. No.1 pp. 18-30, (2002) https://doi.org/10.1159/000066679
  10. D. Monti, P. Chetoni, S. Burgalassi, S. Tampucci, M Centini, C. Anselmi, "4-Methylbenzylidene Camphor Microspheres: Reconstituted Epidermis (Skinethic®) Permeation and Distribution", International journal of cosmetic science, Vol.37. No.3 pp. 298-305, (2015) https://doi.org/10.1111/ics.12199
  11. E. M. Pritchard, C. Szybala, D. Boison, D. L. Kaplan, "Silk Fibroin Encapsulated Powder Reservoirs for Sustained Release of Adenosine", Journal of Controlled Release, Vol.144. No.2 pp. 159-167, (2010) https://doi.org/10.1016/j.jconrel.2010.01.035
  12. S. Yeo, D. Kim, M. Park, H. R. Woo, J. M. Yun, and J. L, "Improved Transport of Adenosine Incorporated in Lipid Nanoparticles across Reconstructed Human Epidermis", Bulletin of the Korean Chemical Society, Vol.41. No.10 pp. 969-972, (2020) https://doi.org/10.1002/bkcs.12107
  13. O. Sarheed, D. Shouqair, K. V. R. N. S. Ramesh, M. Amin, J. Boateng, and M. Drechsler, "Physicochemical characteristics and in vitro permeation of loratadine solid lipid nanoparticles for transdermal delivery", Therapeutic Delivery, Vol.11. No.11 pp. 685-700, (2020) https://doi.org/10.4155/tde-2020-0075
  14. M. Liu, J. Wen, and M. Sharma, "Solid Lipid Nanoparticles for Topical Drug Delivery: Mechanisms, Dosage Form Perspectives, and Translational Status", Current Pharmaceutical Design, Vol.26. No.27 pp. 3203-3217, (2020) https://doi.org/10.2174/1381612826666200526145706
  15. P. M. Chaudhari, and A. R. Patil, "Optimization of Itroconazole Solid Lipid Nanoparticles for Topical Delivery", Nanoscience & Nanotechnology-Asia, Vol.10. No.4 pp. 381-389 (2020) https://doi.org/10.2174/2210681208666181112142717
  16. N. Alepee, C. Tornier, C. Robert, C. Amsellem, M. H. Roux, O. Doucet, J. Pachot, M. Meloni, and A. D. B. de Fraissinette, "A catch-up validation study on reconstructed human epidermis (SkinEthicTM RHE) for full replacement of the Draize skin irritation test", Toxicology in Vitro, Vol.24. No.1 pp. 257-266 (2010) https://doi.org/10.1016/j.tiv.2009.08.024