DOI QR코드

DOI QR Code

Effect of a combination of resistance and aerobic exercise training on angiogenesis-related protein expression in different type of skeletal muscle of aged rats

저항성 운동과 유산소 운동 훈련의 병행이 노화쥐 골격근 유형별 혈관신생 관련 단백질 발현에 미치는 영향

  • Yeo, Hyo-Seong (Rehabilitation Medicine of Seoul National University Bundang Hospital)
  • 여효성 (분당서울대학교병원 재활의학과)
  • Received : 2021.05.31
  • Accepted : 2021.06.25
  • Published : 2021.06.30

Abstract

This study was performed to observe the responses of angiogenesis-related protein expression in skeletal muscle of aged rats by regular resistance exercise training with aerobic exercise. For the purpose of the study, naturally aged SD rats (20-24 months, N=18) were used and divided into control (CON, n=6), resistance exercise (RE, n=6), and resistance + aerobic exercise (RE + AE, n=6) groups. RE group performed 3 sets × 4 exercises each session using a ladder for laboratory animals, and RE +AE group performed 2 sets × 3 times of ladder climbing and additional treadmill running (30 min) each session. After 8 weeks of exercise training, soleus muscle and extensor digitorum longus muscle (EDL) were extracted and used for analysis. Western blot was performed to analyze the expression levels of angiogenesis-related proteins (HIF-1α, VEGF, FLK-1, Ang-1, Ang-2) in skeletal muscle. As a result of the study, the expression of HIF-1α, VEGF, FLK-1, Ang-1, and Ang-2 proteins in soleus muscle (type I muscle) was higher in RE +AE than in CON group, and HIF-1α, VEGF, Ang-1, Ang-2 protein expression of RE group was higher than that of CON group. Furthermore, Ang-2 to Ang-1 ratio of RE + AE group was higher than that of RE group, showing differences by exercise type. In EDL muscle (type II muscle), HIF-1α was increased only by RE group, whereas VEGF and FLK-1 protein expressions were increased in both training types, and no difference was observed between the types of exercise training. In addition, there was no difference in angiopoieitin protein expressions in EDL muscle by exercise training. Therefore, in aging, regular exercise training induces skeletal muscle angiogenic response regardless of exercise type, and in particular, the combination of aerobic exercise with resistance exercise may have an additional positive effect on angiogenesis in type I muscle.

이 연구는 노화된 흰쥐를 대상으로 규칙적인 저항성 운동에 유산소 운동을 병행하는 훈련을 실시하여 골격근에서 나타나는 혈관신생 관련 단백질 발현의 반응을 관찰하기 위해 수행되었다. 연구의 목적을 위해 자연적으로 노화된 SD계열 흰쥐(20-24개월령, N=18)를 사용하여 통제(CON, n=6), 저항성 운동(RE, n=6), 저항성+유산소 운동(RE+AE, n=6) 집단으로 구분하였다. 저항성 운동 집단은 실험동물용 사다리를 이용하여 매회 3세트×4회의 운동을 실시하였고 저항성 운동+유산소 운동 집단은 매회 2세트×3회의 사다리 오르기와 추가적인 30분간의 트레드밀 달리기를 수행하였다. 총 8주간의 운동 훈련 종료 후 가자미 근과 장지신근을 적출하여 분석에 사용하였다. 골격근에서 혈관신생 관련 단백질들(HIF-1α, VEGF, FLK-1, Ang-1, Ang-2)의 발현 수준을 분석하기 위해 western blot을 실시하였다. 연구결과, 저항성+유산소 운동 집단에서 가자미근(type I 근육)의 HIF-1α, VEGF, FLK-1, Ang-1, Ang-2 단백질 발현이 통제집단에 비해 높았으며 저항성 운동만 수행할 경우 HIF-1α, VEGF, Ang-1, Ang-2 단백질 발현이 통제집단에 비해 높았다. 또한 가자미근에서 저항성+유산소 운동훈련 집단의 Ang-2 to Ang-1 ratio가 저항성 운동 집단에 비해 높아 운동훈련 유형별 차이를 보였다. 한편, 장지신근(type II 근육)에서 HIF-1α는 저항성 운동 훈련에 의해서만 증가된 반면 VEGF와 FLK-1 단백질 발현은 두 훈련 유형 모두에서 증가되었고 운동 훈련 유형별 차이는 관찰되지 않았다. 또한 장지신근의 angiopoieitin 단백질들의 발현은 운동 훈련에 의한 차이가 없었다. 그러므로 노화에서 규칙적인 운동 훈련은 운동 유형에 관계없이 골격근 혈관신생 반응을 유도하며, 특히 저항성 운동에 유산소 운동의 병행은 type I 근조직 유형에서 혈관신생에 대한 추가적인 긍정적 효과를 가질 수 있다.

Keywords

Acknowledgement

이 논문 또는 저서는 2017년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017S1A5B5A01024774)

References

  1. L. Hosseini, M. S. Vafaee, R. Badalzadeh, "Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats", Journal of cardiovascular pharmacology and therapeutics, Vol.25, No.3, pp. 240-250, (2020). https://doi.org/10.1177/1074248419882002
  2. R. Roubenoff, V. A. Hughes, "Sarcopenia: current concepts", The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, Vol.55, No.12, pp. M716-M724, (2000). https://doi.org/10.1093/gerona/55.12.M716
  3. M. J. Rennie, "Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover", Applied Physiology, Nutrition, and Metabolism, Vol.34, No.3, pp. 377-381, (2009). https://doi.org/10.1139/H09-012
  4. C. P. Lambert, W. J. Evans, "Effects of aging and resistance exercise on determinants of muscle strength", Journal of the American Aging Association, Vol.25, No.2, pp. 73-78, (2002). https://doi.org/10.1007/s11357-002-0005-0
  5. S. Joanisse, J. P. Nederveen, T. Snijders, B. R. McKay, G. Parise, "Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization", Gerontology, Vol.63, No.1, pp. 91-100, (2017). https://doi.org/10.1159/000450922
  6. B. J. Behnke, M. W. Ramsey, J. N. Stabley, J. M. Dominguez 2nd, R. T. Davis 3rd, D. J. McCullough, J. M. Muller Delp, M. D. Delp, "Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology", Journal of applied physiology, Vol.113, No.11, pp. 1699-1708, (2012). https://doi.org/10.1152/japplphysiol.01025.2012
  7. S. Egginton, I. Badr, J. Williams, D. Hauton, G. C. Baan, R. T. Jaspers, "Physiological angiogenesis is a graded, not threshold, response", The Journal of physiology, Vol.589, No.1, pp. 195-206, (2011). https://doi.org/10.1113/jphysiol.2010.194951
  8. K. Tang, E. C. Breen, H. P. Gerber, N. M. Ferrara, P. D. Wagner, "Capillary regression in vascular endothelial growth factor-deficient skeletal muscle", Physiological genomics, Vol.18, No.1, 63-69, (2004). https://doi.org/10.1152/physiolgenomics.00023.2004
  9. N. A. Ryan, K. A. Zwetsloot, L. M. Westerkamp, R. C. Hickner, W. E. Pofahl, T. P. Gavin, "Lower skeletal muscle capillarization and VEGF expression in aged vs. young men", Journal of applied physiology, Vol.100, No.1, pp. 178-185, (2006). https://doi.org/10.1152/japplphysiol.00827.2005
  10. A. N. Croley, K. A. Zwetsloot, L. M. Westerkamp, N. A. Ryan, A. M. Pendergast, R. C. Hickner, W. E. Pofahl, T. P. Gavin, T. P, "Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women", Journal of applied physiology, Vol.99, No.5, pp. 1872-1879, (2005). https://doi.org/10.1152/japplphysiol.00498.2005
  11. H. S. Yeo, J. Y. Lim, N. Y. Ahn, "Effects of Aging on Angiogenic and Muscle Growth-Related Factors in Naturally Aged Rat Skeletal Muscles", Annals of geriatric medicine and research, Vol.24, No.4, pp. 305, (2020). https://doi.org/10.4235/agmr.20.0077
  12. M. Ardakanizade, "The effects of mid-and long-term endurance exercise on heart angiogenesis and oxidative stress", Iranian journal of basic medical sciences, Vol.21, No.8, pp. 800, (2018).
  13. N. Charifi, F. Kadi, L. Feasson, F. Costes, A. Geyssant, C. Denis, "Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training", The Journal of physiology, Vol.554, No.2, pp. 559-569, (2004). https://doi.org/10.1113/jphysiol.2003.046953
  14. X. W. Cheng, M. Kuzuya, W. Kim, H. Song, L. Hu, A. Inoue, K. Nakamura, Q. Di, T. Sasaki, M. Tsuzuki, G. Shi, K. Okumura, T. Murohara, "Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 α reactivation in mice of advanced age", Circulation, Vol.122, No.7, pp. 707, (2010). https://doi.org/10.1161/CIRCULATIONAHA.109.909218
  15. T. M. Holloway, T. Snijders, V. L. LJC, L. B. Verdijk, "Temporal response of angiogenesis and hypertrophy to resistance training in young men", Medicine and science in sports and exercise, Vol.50, No.1, pp. 36-45, (2018). https://doi.org/10.1249/MSS.0000000000001409
  16. N. Ahn, K. Kim, "Effects of Aerobic and Resistance Exercise on Myokines in High Fat Diet-Induced Middle-Aged Obese Rats", International journal of environmental research and public health, Vol.17, No.8, pp. 2685, (2020). https://doi.org/10.3390/ijerph17082685
  17. H. T. Roh, S. Y. Cho, W. Y. So, "A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity", Journal of clinical medicine, Vol.9, No.3, pp. 842. (2020). https://doi.org/10.3390/jcm9030842
  18. P. G. Lloyd, B. M. Prior, H. T. Yang, R. L. Terjung, "Angiogenic growth factor expression in rat skeletal muscle in response to exercise training", American Journal of Physiology-Heart and Circulatory Physiology, Vol.284, No.5, pp. H1668-H1678, (2003). https://doi.org/10.1152/ajpheart.00743.2002
  19. J. L. Williams, A. Weichert, A. Zakrzewicz, L. Da Silva-Azevedo, A. R. Pries, O. Baum, S. Egginton, "Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis", Clinical science, Vol.110, No.5, pp. 587-595, (2006). https://doi.org/10.1042/CS20050185
  20. T. R. Lundberg, R. Fernandez-Gonzalo, T. Gustafsson, P. A. Tesch, "Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training", Journal of applied physiology, Vol.114, No.1, pp. 81-89, (2013). https://doi.org/10.1152/japplphysiol.01013.2012
  21. A. G. Philippe, G. Py, F. B. Favier, A. M. Sanchez, A. Bonnieu, T. Busso, R. Candau, "Modeling the responses to resistance training in an animal experiment study", BioMed research international, Vol. 2015. (2015).
  22. E. Koltai, Z. Zhao, Z. Lacza, A. Cselenyak, G. Vacz, C. Nyakas, I. Boldogh, N. Ichinoseki-Sekine, Z. Radak, "Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage", Rejuvenation research, Vol.14, No.6, pp. 585-596, (2011). https://doi.org/10.1089/rej.2011.1178
  23. D. C. Lee, R. R. Pate, C. J. Lavie, X. Sui, T. S. Church, S. N. Blair, "Leisure-time running reduces all-cause and cardiovascular mortality risk", Journal of the American College of Cardiology, Vol.64, No.5, pp. 472-481, (2014). https://doi.org/10.1016/j.jacc.2014.04.058
  24. S. C. Moore, A. V. Patel, C. E. Matthews, A. B. de Gonzalez, Y. Park, H. A. Katki, M. S. Linet, E. Weiderpass, K. Visvanathan, K. J. Helzlsouer, M. Thun, S. M. Gapstur, P. Hartge, I. M. Lee, "Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis", PLoS Med, Vol.9, No.11, pp. e1001335. (2012). https://doi.org/10.1371/journal.pmed.1001335
  25. K. A. Larkin, R. G. MacNeil, M. Dirain, B. Sandesara, T. M. Manini, T. W. Buford, "Blood flow restriction enhances post-resistance exercise angiogenic gene expression", Medicine and science in sports and exercise, Vol.44, No.11, pp. 2077, (2012). https://doi.org/10.1249/MSS.0b013e3182625928
  26. L. N. Forti, E. Van Roie, R. Njemini, W. Coudyzer, I. Beyer, C. Delecluse, I. Bautmans, "Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults", Experimental gerontology, Vol.70, pp. 144-149, (2015). https://doi.org/10.1016/j.exger.2015.08.004
  27. D. R. Slivka, M. W. Heesch, C. L. Dumke, J. S. Cuddy, W. S. Hailes, B. C. Ruby, "Human skeletal muscle mRNA response to a single hypoxic exercise bout", Wilderness & environmental medicine, Vol.25, No.4, pp. 462-465, (2014). https://doi.org/10.1016/j.wem.2014.06.011
  28. M. J. Drummond, S. Fujita, A. Takashi, H. C. Dreyer, E. Volpi, B. B. Rasmussen, "Human muscle gene expression following resistance exercise and blood flow restriction", Medicine and science in sports and exercise, Vol.40, No.4, pp. 691. (2008). https://doi.org/10.1249/MSS.0b013e318160ff84
  29. P. Rodriguez-Miguelez, E. Lima-Cabello, S. Martinez-Florez, M. Almar, M. J. Cuevas, J. Gonzalez-Gallego, "Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise", Journal of applied physiology, Vol.118, No.8, pp. 1075-1083, (2015). https://doi.org/10.1152/japplphysiol.00780.2014
  30. A. Ahmadi, D. Sheikholeslami-Vatani, S. Ghaeeni, M. Baazm, "The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles", Molecular Biology Reports, Vol.48, No.3, pp. 2153-2161, (2021). https://doi.org/10.1007/s11033-021-06224-0
  31. M. E. Lindholm, H. Rundqvist, "Skeletal muscle hypoxia-inducible factor-1 and exercise", Experimental physiology, Vol.101, No.1, pp. 28-32, (2016). https://doi.org/10.1113/EP085318
  32. O. Hudlicka, M. D. Brown, "Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor", Journal of vascular research, Vol.46, No.5, pp. 504-512, (2009). https://doi.org/10.1159/000226127
  33. L. Jensen, J. Bangsbo, Y. Hellsten, "Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle", The Journal of physiology, Vol. 557, No.2, pp. 571-582, (2004). https://doi.org/10.1113/jphysiol.2003.057711
  34. I. M. Olfert, R. A. Howlett, K. Tang, N. D. Dalton, Y. Gu, K. L. Peterson, P. P. Wagner, E. C. Breen, "Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice", The Journal of physiology, Vol.15, No.587(Pt 8), pp. 1755-1767, (2009).
  35. T. P. Gavin, R. M. Kraus, J. A. Carrithers, J. P. Garry, R. C. Hickner, "Aging and the skeletal muscle angiogenic response to exercise in women", Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, Vol.70, No.10, pp. 1189-1197, (2015). https://doi.org/10.1093/gerona/glu138
  36. M. Ratajczak, D. Skrypnik, P. Bogdanski, E. Madry, J. Walkowiak, M. Szulinska, J. Meciaszek, M. Kregielska-Narozna, J. Karolkiewicz, Effects of Endurance and "Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial", International journal of environmental research and public health, Vol.16, No.21, pp. 4291, (2019). https://doi.org/10.3390/ijerph16214291
  37. R. Fernandez-Gonzalo, T. R. Lundberg, P. A. Tesch, "Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone", Acta Physiologica, Vol.209, No.4, pp. 283-294, (2013). https://doi.org/10.1111/apha.12174
  38. B. Hoier, K. Olsen, D. J. Hanskov, M. Jorgensen, L. R. Norup, Y. Hellsten, "Early time course of change in angiogenic proteins in human skeletal muscle and vascular cells with endurance training", Scandinavian Journal of Medicine & Science in Sports, Vol.30, No.7, pp. 1117-1131, (2020). https://doi.org/10.1111/sms.13665
  39. S. D. Mason, H. Rundqvist, I. Papandreou, R. Duh, W. J. McNulty, R. A. Howlett, I. M. Olfert, C. J. Sundberg, N. C. Denko, L. Poellinger, R. S. Johnson, "HIF-1α in endurance training: suppression of oxidative metabolism", American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol.293, No.5, pp. R2059-R2069, (2007). https://doi.org/10.1152/ajpregu.00335.2007
  40. M. Bellafiore, G. Battaglia, A. Bianco, A. Palma, "Expression pattern of angiogenic factors in healthy heart in response to physical exercise intensity", Frontiers in physiology, Vol.10, pp. 238, (2019). https://doi.org/10.3389/fphys.2019.00238
  41. C. Suri, J. McClain, G. Thurston, D. M. McDonald, H. Zhou, E. H. Oldmixon, T. N. Sato, G. D. Yancopoulos, "Increased vascularization in mice overexpressing angiopoietin-1", Science, Vol.282, No.5388, pp. 468-471, (1998). https://doi.org/10.1126/science.282.5388.468
  42. A. I. Nykanen, K. Pajusola, R. Krebs, M. A. Keranen, O. Raisky, P. K. Koskinen, K. Alitalo, K. B. Lemstrom, "Common protective and diverse smooth muscle cell effects of AAV-mediated angiopoietin-1 and-2 expression in rat cardiac allograft vasculopathy", Circulation research, Vol.98, No.11, pp. 1373-1380, (2006). https://doi.org/10.1161/01.RES.0000225987.52765.13
  43. T. P. Gavin, J. L. Drew, C. J. Kubik, W. E. Pofahl, R. C. Hickner, "Acute resistance exercise increases skeletal muscle angiogenic growth factor expression", Acta physiologica, Vol.191, No.2, pp. 139-146, (2007). https://doi.org/10.1111/j.1748-1716.2007.01723.x