DOI QR코드

DOI QR Code

The Principle and Trends of CRISPR/Cas Diagnosis

CRISPR/Cas 진단의 원리와 현황

  • Park, Jeewoong (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Kang, Bong Keun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Shin, Hwa Hui (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • Shin, Jun Geun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
  • 박지웅 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ;
  • 강봉근 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ;
  • 신화희 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀) ;
  • 신준근 (대구경북첨단의료산업진흥재단, 첨단의료기기개발지원센터, 진단의료기기팀)
  • Received : 2021.06.04
  • Accepted : 2021.06.30
  • Published : 2021.06.30

Abstract

The POCT (point-of-care test) sensing that has been a fast-developing field is expected to be a next generation technology in health care. The POCT sensors for the detection of proteins, small molecules and especially nucleic acids have lately attracted considerable attention. According to the World Health Organization (WHO), the POCT methods are required to follow the ASSURED guidelines (Affordable, Sensitive, Specific, User- friendly, Robust and rapid, Equipment-free, Deliverable to all people who need the test). Recently, several CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic techniques using the sensitive gene recognition function of CRISPR have been reported. CRISPR/Cas (Cas, CRISPR associated protein) systems based detection technology is the most innovative gene analysis technology that is following the ASSURED guidelines. It is being re-emerged as a powerful diagnostic tool that can detect nucleic acids due to its characteristics that enable rapid, sensitive and specific analyses of nucleic acid. The first CRISPR-based diagnosis begins with the discovery of the additional function of Cas13a. The enzymatic cleavage occurs when the conjugate of Cas protein and CRISPR RNA (crRNA) detect a specific complementary sequence of the target sequence. Enzymatic cleavage occurs on not only the target sequence, but also all surrounding non-target single-stranded RNAs. This discovery was immediately utilized as a biosensor, and numerous sensor studies using CRISPR have been reported since then. In this review, the concept of CRISPR, the characteristics of the Cas protein required for CRISPR diagnosis, the current research trends of CRISPR diagnostic technology, and some aspects to be improved in the future are covered.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1F1A1051971) (No.2021R1A2C2013396).

References

  1. Kosack CS, Page AL, Klatser PR A Guide to Aid the Selection of Diagnostic Tests. Bull. World Health Organ. 2017;95: 639-645. https://doi.org/10.2471/BLT.16.187468
  2. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-.). 2016;353. https://doi.org/10.1126/science.80.2077.353
  3. East-Seletsky A, O'Connell MR, Knight SC, et al. Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature 2016;538:270-273. https://doi.org/10.1038/nature19802
  4. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438-442. https://doi.org/10.1126/science.aam9321
  5. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isoenzyme Conversion in Escherichia Coli, and Identification of the Gene Product. J. Bacteriol. 1987;169:5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
  6. Bolotin A, Quinquis B, Sorokin A, et al. Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin. Microbiology 2005; 151:2551-2561. https://doi.org/10.1099/mic.0.28048-0
  7. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, et al. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol. 2005; 60:174-182. https://doi.org/10.1007/s00239-004-0046-3
  8. Chen JS, Doudna JA The Chemistry of Cas9 and Its CRISPR Colleagues. Nat. Rev. Chem. 2017;1.
  9. Nishimasu H, Ran FA, Hsu PD, et al. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 2014;156:935-949. https://doi.org/10.1016/j.cell.2014.02.001
  10. Slaymaker IM, Mesa P, Kellner MJ, et al. High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Rep. 2019;26:3741-3751.e5. https://doi.org/10.1016/j.celrep.2019.02.094
  11. Gasiunas G, Barrangou R, Horvath P, et al. Cas9-CrRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012;109:2579-2586. https://doi.org/10.1073/pnas.1109397109
  12. Makarova KS, Haft DH, Barrangou R, et al. Evolution and Classification of the CRISPR-Cas Systems. Nat. Rev. Microbiol. 2011;9:467-477. https://doi.org/10.1038/nrmicro2577
  13. Cong L, Ran FA, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science (80-.). 2013;339:819-823. https://doi.org/10.1126/science.1231143
  14. Jinek M, Chylinski K, Fonfara I, et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80-.). 2012;337:816-821. https://doi.org/10.1126/science.1225829
  15. Mali P, Yang L, Esvelt KM, et al. RNA-Guided Human Genome Engineering via Cas9. Science (80-.). 2013;339: 823-826. https://doi.org/10.1126/science.1232033
  16. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Γuided Platform for Sequence-Specific Control of Gene Expression. Cell 2013;152:1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  17. Li Y, Li S, Wang J, et al. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37: 730-743. https://doi.org/10.1016/j.tibtech.2018.12.005
  18. Hsu PD, Scott DA, Weinstein JA, et al. DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. Nat. Biotechnol. 2013;31:827-832. https://doi.org/10.1038/nbt.2647
  19. Jiang F, Zhou K, Ma L, et al. A Cas9-Guide RNA Complex Preorganized for Target DNA Recognition. Science (80-.). 2015;348:1477-1481. https://doi.org/10.1126/science.aab1452
  20. Pickar-Oliver A, Gersbach CA The next Generation of CRISPR-Cas Technologies and Applications. Nat. Rev. Mol. Cell Biol. 2019;20:490-507. https://doi.org/10.1038/s41580-019-0131-5
  21. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary Classification of CRISPR-Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020;18:67-83. https://doi.org/10.1038/s41579-019-0299-x
  22. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a Target Binding Unleashes Single-Stranded DNase Activity. Science (80-.). 2018;360:436-439. https://doi.org/10.1126/science.aar6245
  23. Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for Human Genome Editing. Nat. Commun. 2019;10.
  24. Li SY, Cheng QX, Li XY, et al. CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discov. 2018;4:18-21. https://doi.org/10.1038/s41421-018-0025-2
  25. Lei C, Li S-Y, Liu J-K, et al. The CCTL (Cpf1-Assisted Cutting and Taq DNA Ligase-Assisted Ligation) Method for Efficient Editing of Large DNA Constructs in Vitro. Nucleic Acids Res. 2017;45:e74.
  26. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science (80-. ). 2016;353:aaf5573. https://doi.org/10.1126/science.aaf5573
  27. Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA Targeting with CRISPR-Cas13. Nature 2017;550:280-284. https://doi.org/10.1038/nature24049
  28. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448. https://doi.org/10.1126/science.aas8836
  29. Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a and Csm6. Science (80-.). 2018;360:439-444. https://doi.org/10.1126/science.aaq0179
  30. Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018;173:665-676.e14. https://doi.org/10.1016/j.cell.2018.02.033
  31. Harrington LB, Burstein D, Chen JS, et al. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science (80-.). 2018;362:839-842. https://doi.org/10.1126/science.aav4294
  32. Karvelis T, Bigelyte G, Young JK, et al. PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020;48:5016-5023. https://doi.org/10.1093/nar/gkaa208
  33. Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 Variants with Broad PAM Compatibility and High DNA Specificity. Nature 2018;556:57-63. https://doi.org/10.1038/nature26155
  34. Chatterjee P, Jakimo N, Jacobson JM Minimal PAM Specificity of a Highly Similar SpCas9 Ortholog Pranam. Sci. Adv. 2018;1-11.
  35. Slaymaker IM, Gao L, Zetsche B, et al. Rationally Engineered Cas9 Nucleases with Improved Specificity. Science (80-.). 2016;351:84 LP-88. https://doi.org/10.1126/science.aad5227
  36. Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a Variants with Increased Activities and Improved Targeting Ranges for Gene, Epigenetic and Base Editing. Nat. Biotechnol. 2019;37:276-282. https://doi.org/10.1038/s41587-018-0011-0
  37. Xiong E, Jiang L, Tian T, et al. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew. Chemie 2021;133:5367-5375. https://doi.org/10.1002/ange.202014506
  38. Li S, Gu Y, Lyu Y, et al. Integrated Graphene Oxide Purification-Lateral Flow Test Strips (IGOP-LFTS) for Direct Detection of PCR Products with Enhanced Sensitivity and Specificity. Anal. Chem. 2017;89:12137-12144. https://doi.org/10.1021/acs.analchem.7b02769
  39. Kasetsirikul S, Shiddiky MJA, Nguyen N-T Challenges and Perspectives in the Development of Paper-Based Lateral Flow Assays. Microfluid. Nanofluidics 2020;24:17. https://doi.org/10.1007/s10404-020-2321-z
  40. Bai J, Lin H, Li H, et al. Cas12a-Based On-Site and Rapid Nucleic Acid Detection of African Swine Fever. Front. Microbiol. 2019;10:1-9. https://doi.org/10.3389/fmicb.2019.00001
  41. Chang Y, Deng Y, Li T, et al. Visual Detection of Porcine Reproductive and Respiratory Syndrome Virus Using CRISPR-Cas13a. Transbound. Emerg. Dis. 2020;67:564-571. https://doi.org/10.1111/tbed.13368
  42. Kaminski MM, Alcantar MA, Lape IT, et al. A CRISPR-Based Assay for the Detection of Opportunistic Infections Post-Transplantation and for the Monitoring of Transplant Rejection. Nat. Biomed. Eng. 2020;4:601-609. https://doi.org/10.1038/s41551-020-0546-5
  43. Mukama O, Yuan T, He Z, et al. A High Fidelity CRISPR/Cas12a Based Lateral Flow Biosensor for the Detection of HPV16 and HPV18. Sensors Actuators, B Chem. 2020;316.
  44. Sullivan TJ, Dhar AK, Cruz-Flores R, et al. Rapid, CRISPR-Based, Field-Deployable Detection Of White Spot Syndrome Virus In Shrimp. Sci. Rep. 2019;9:1-7. https://doi.org/10.1038/s41598-018-37186-2
  45. Tsou JH, Leng Q, Jiang F A CRISPR Test for Detection of Circulating Nuclei Acids. Transl. Oncol. 2019;12:1566-1573. https://doi.org/10.1016/j.tranon.2019.08.011
  46. Wang X, Xiong E, Tian T, et al. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 2020;14:2497-2508. https://doi.org/10.1021/acsnano.0c00022
  47. Wang L, Shen X, Wang T, et al. A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosens. Bioelectron. 2020; 165:112364. https://doi.org/10.1016/j.bios.2020.112364
  48. Hu M, Yuan C, Tian T, et al. Single-Step, Salt-Aging-Free, and Thiol-Free Freezing Construction of AuNP-Based Bioprobes for Advancing CRISPR-Based Diagnostics. J. Am. Chem. Soc. 2020;142:7506-7513. https://doi.org/10.1021/jacs.0c00217
  49. Mukama O, Wu J, Li Z, et al. An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosens. Bioelectron. 2020;159:112143. https://doi.org/10.1016/j.bios.2020.112143
  50. Green AA, Silver PA, Collins JJ, et al. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell 2014;159:925-939. https://doi.org/10.1016/j.cell.2014.10.002
  51. Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016;165:1255-1266. https://doi.org/10.1016/j.cell.2016.04.059
  52. Qiu X-YY, Zhu LL-YY, Zhu C-SS, et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth. Biol. 2018;7:807-813. https://doi.org/10.1021/acssynbio.7b00446
  53. Yuan C, Tian T, Sun J, et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal. Chem. 2020;92:4029-4037. https://doi.org/10.1021/acs.analchem.9b05597
  54. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science (80-.). 2017; 356:438 LP-442. https://doi.org/10.1126/science.aam9321
  55. Zhou R, Li Y, Dong T, et al. A Sequence-Specific Plasmonic Loop-Mediated Isothermal Amplification Assay with Orthogonal Color Readouts Enabled by CRISPR Cas12a. Chem. Commun. 2020;56:3536-3538. https://doi.org/10.1039/D0CC00397B
  56. Hajian R, Balderston S, Tran T, et al. Detection of Unamplified Target Genes via CRISPR-Cas9 Immobilized on a Graphene Field-Effect Transistor. Nat. Biomed. Eng. 2019;3:427-437. https://doi.org/10.1038/s41551-019-0371-x
  57. Weckman NE, Ermann N, Gutierrez R, et al. Multiplexed DNA Identification Using Site Specific DCas9 Barcodes and Nanopore Sensing. ACS Sensors 2019;4:2065-2072. https://doi.org/10.1021/acssensors.9b00686
  58. Yang W, Restrepo-Perez L, Bengtson M, et al. Detection of CRISPR-DCas9 on DNA with Solid-State Nanopores. Nano Lett. 2018;18:6469-6474. https://doi.org/10.1021/acs.nanolett.8b02968
  59. English MA, Soenksen LR, Gayet R V, et al. Programmable CRISPR-Responsive Smart Materials. Science (80-.). 2019; 365:780 LP-785. https://doi.org/10.1126/science.aaw5122
  60. Nouri R, Jiang Y, Lian XL, et al. Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sensors 2020;5:1273-1280. https://doi.org/10.1021/acssensors.0c00497
  61. Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free MiRNA Diagnostics. Adv. Mater. 2019;31: 1905311. https://doi.org/10.1002/adma.201905311
  62. Dai Y, Somoza RA, Wang L, et al. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (Cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chemie - Int. Ed. 2019;58:17399-17405. https://doi.org/10.1002/anie.201910772
  63. Xu W, Jin T, Dai Y, et al. Surpassing the Detection Limit and Accuracy of the Electrochemical DNA Sensor through the Application of CRISPR Cas Systems. Biosens. Bioelectron. 2020;155:112100. https://doi.org/10.1016/j.bios.2020.112100
  64. Zhang D, Yan Y, Que H, et al. CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors 2020;5:557-562. https://doi.org/10.1021/acssensors.9b02461
  65. Katzmeier F, Aufinger L, Dupin A, et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019;14:1-17.
  66. Tycko J, Myer VE, Hsu PD Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell 2016;63:355-370. https://doi.org/10.1016/j.molcel.2016.07.004
  67. Anderson KR, Haeussler M, Watanabe C, et al. CRISPR Off-Target Analysis in Genetically Engineered Rats and Mice. Nat. Methods 2018;15:512-514. https://doi.org/10.1038/s41592-018-0011-5
  68. Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-Guided FokI Nucleases for Highly Specific Genome Editing. Nat. Biotechnol. 2014:32:569-576. https://doi.org/10.1038/nbt.2908
  69. Zhang Y, Qian L, Wei W, et al. Paired Design of DCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth. Biol. 2017;6:211-216. https://doi.org/10.1021/acssynbio.6b00215
  70. Li L, Li S, Wu N, et al. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation SI. ACS Synth. Biol. 2019;3:1-5. https://doi.org/10.1021/sb400136f
  71. Dong H, Lei J, Ding L, et al. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013;113:6207-6233. https://doi.org/10.1021/cr300362f
  72. Shan Y, Zhou X, Huang R, et al. High-Fidelity and Rapid Quantification of MiRNA Combining CrRNA Programmability and CRISPR/Cas13a Trans-Cleavage Activity. Anal. Chem. 2019;91:5278-5285. https://doi.org/10.1021/acs.analchem.9b00073
  73. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science (80-.). 2018;360:444-448. https://doi.org/10.1126/science.aas8836
  74. Shao N, Han X, Song Y, et al. CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip. Anal. Chem. 2019;91:12384-12391. https://doi.org/10.1021/acs.analchem.9b02925
  75. He Q, Yu D, Bao M, et al. High-Throughput and All-Solution Phase African Swine Fever Virus (ASFV) Detection Using CRISPR-Cas12a and Fluorescence Based Point-of-Care System. Biosens. Bioelectron. 2020;154.
  76. Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054. https://doi.org/10.1021/acssensors.9b00239
  77. Yin K, Ding X, Li Z, et al. Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultra-sensitive and Quantitative Molecular Diagnosis. Anal. Chem. 2020;92:8561-8568. https://doi.org/10.1021/acs.analchem.0c01459
  78. Qin P, Park M, Alfson KJ, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors 2019;4:1048-1054. https://doi.org/10.1021/acssensors.9b00239
  79. Wu X, Scott DA, Kriz AJ, et al. Genome-Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells. Nat. Biotechnol. 2014;32:670-676. https://doi.org/10.1038/nbt.2889
  80. Kuscu C, Arslan S, Singh R, et al. Genome-Wide Analysis Reveals Characteristics of off-Target Sites Bound by the Cas9 Endonuclease. Nat. Biotechnol. 2014;32:677-683. https://doi.org/10.1038/nbt.2916
  81. O'Geen H, Henry IM, Bhakta MS, et al. A Genome-Wide Analysis of Cas9 Binding Specificity Using ChIP-Seq and Targeted Sequence Capture. Nucleic Acids Res. 2015;43:3389-3404. https://doi.org/10.1093/nar/gkv137
  82. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016;529:490-495. https://doi.org/10.1038/nature16526
  83. Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced Proof-reading Governs CRISPR-Cas9 Targeting Accuracy. Nature 2017;550:407-410. https://doi.org/10.1038/nature24268
  84. Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the Specificity of CRISPR Systems with Engineered RNA Secondary Structures. Nat. Biotechnol. 2019;37:657-666. https://doi.org/10.1038/s41587-019-0095-1
  85. Ke Y, Huang S, Ghalandari B, et al. Hairpin-Spacer CrRNAEnhanced CRISPR/Cas13a System Promotes the Specificity of Single Nucleotide Polymorphism (SNP) Identification. Adv. Sci. 2021;8:1-11.
  86. Zhang K, Deng R, Teng X, et al. Direct Visualization of SingleNucleotide Variation in MtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. J. Am. Chem. Soc. 2018;140:11293-11301. https://doi.org/10.1021/jacs.8b05309
  87. Walton RT, Christie KA, Whittaker MN, et al. Unconstrained Genome Targeting with Near-PAMless Engineered CRISPR-Cas9 Variants. Science (80-.). 2020;368:290-296. https://doi.org/10.1126/science.aba8853
  88. Anderson EM, Haupt A, Schiel JA, et al. Systematic Analysis of CRISPR-Cas9 Mismatch Tolerance Reveals Low Levels of off-Target Activity. J. Biotechnol. 2015;211:56-65. https://doi.org/10.1016/j.jbiotec.2015.06.427
  89. Pattanayak V, Lin S, Guilinger JP, et al. High-Throughput Profiling of off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity. Nat. Biotechnol. 2013;31:839-843. https://doi.org/10.1038/nbt.2673
  90. Ran FA, Hsu PD, Lin CY, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 2013;154:1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
  91. Park J-W, Lee SJ, Ren S, et al. Acousto-Microfluidics for Screening of SsDNA Aptamer. Sci. Rep. 2016;6:27121. https://doi.org/10.1038/srep27121
  92. Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-Wide Specificities of CRISPR-Cas Cpf1 Nucleases in Human Cells. Nat. Biotechnol. 2016;34:869-874. https://doi.org/10.1038/nbt.3620
  93. Strohkendl I, Saifuddin FA, Rybarski JR, et al. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol. Cell 2018;71:816-824.e3. https://doi.org/10.1016/j.molcel.2018.06.043
  94. Sundaresan R, Parameshwaran HP, Yogesha SD, et al. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Cell Rep. 2017;21:3728-3739. https://doi.org/10.1016/j.celrep.2017.11.100
  95. Dincer C, Bruch R, Kling A, et al. Multiplexed Point-of-Care Testing - XPOCT. Trends Biotechnol. 2017;35:728-742. https://doi.org/10.1016/j.tibtech.2017.03.013
  96. Li Y, Liu L, Liu G CRISPR/Cas Multiplexed Biosensing: A Challenge or an Insurmountable Obstacle? Trends Biotechnol. 2019;37:792-795. https://doi.org/10.1016/j.tibtech.2019.04.012
  97. Zhou W, Hu L, Ying L, et al. A CRISPR-Cas9-Triggered Strand Displacement Amplification Method for Ultrasensitive DNA Detection. Nat. Commun. 2018;9:1-11. https://doi.org/10.1038/s41467-017-02088-w
  98. Wang L, Zhao P, Si X, et al. Rapid and Specific Detection of Listeria Monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front. Microbiol. 2020;10:1-13. https://doi.org/10.3389/fcimb.2020.00001
  99. Wu H, He J song, Zhang F, et al. Contamination-Free Visual Detection of CaMV35S Promoter Amplicon Using CRISPR/Cas12a Coupled with a Designed Reaction Vessel: Rapid, Specific and Sensitive. Anal. Chim. Acta 2020;1096:130-137. https://doi.org/10.1016/j.aca.2019.10.042
  100. Wu H, Qian C, Wu C, et al. End-Point Dual Specific Detection of Nucleic Acids Using CRISPR/Cas12a Based Portable Biosensor. Biosens. Bioelectron. 2020;157:112153. https://doi.org/10.1016/j.bios.2020.112153
  101. Peng L, Zhou J, Liu G, et al. CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors Actuators, B Chem. 2020;320:128164. https://doi.org/10.1016/j.snb.2020.128164
  102. Li H, Li M, Yang Y, et al. Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Anal. Chem. 2021;93:3209-3216. https://doi.org/10.1021/acs.analchem.0c04687
  103. Xiong Y, Zhang J, Yang Z, et al. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J. Am. Chem. Soc. 2020;142:207-213. https://doi.org/10.1021/jacs.9b09211
  104. Wang R, Qian C, Pang Y, et al. OpvCRISPR: One-Pot Visual RT-LAMP-CRISPR Platform for SARS-Cov-2 Detection. Biosens. Bioelectron. 2021;172:112766. https://doi.org/10.1016/j.bios.2020.112766
  105. Nouri R, Tang Z, Dong M, et al. CRISPR-Based Detection of SARS-CoV-2: A Review from Sample to Result. Biosens. Bioelectron. 2021;178:113012. https://doi.org/10.1016/j.bios.2021.113012
  106. Zhu X, Wang X, Li S, et al. Rapid, Ultrasensitive, and Highly Specific Diagnosis of COVID-19 by CRISPR-Based Detection. ACS Sensors 2021;0-7.
  107. Rahimi H, Salehiabar M, Barsbay M, et al. CRISPR Systems for COVID-19 Diagnosis. ACS Sensors 2021.