DOI QR코드

DOI QR Code

e-VTOL 항공기의 감항기술기준 적용 연구

Study on the Application of Airworthiness Standard for the e-VTOL

  • 투고 : 2021.03.19
  • 심사 : 2021.05.21
  • 발행 : 2021.07.01

초록

e-VTOL 항공기는 전기동력으로 인한 운용유지비의 절감, 친환경성, 수직이착륙으로 인한 도심운용, 자동화로 인한 조종의 편리성 등 미래 교통수단으로 향후 수요가 급증할 것으로 예상된다. 이에 전 세계적으로 활발한 연구 개발이 진행 중에 있으나 상용화를 위해서 필수적으로 요구되는 안전성 확보와 인증에 있어 기술적으로 해결해야 할 문제점들이 상존한다. 이러한 어려움으로 운송사업용 형식증명 및 표준감항증명을 받은 e-VTOL 항공기는 아직까지 전 세계적으로 없는 상태이다. 현행 항공기 감항기술기준에서 요구되는 안전도 수준은 상당히 높고 이를 입증하는 과정도 상당히 까다롭다. e-VTOL 항공기 인증도 현행 감항기술기준에서 요구하는 안전도 수준을 만족해야 하나 현행 기준의 적용성과 동등한 안전성 확보에 필요한 기술적인 한계와 문제점이 존재한다. 본 연구에서는 이러한 기술적 한계와 문제점들을 e-VTOL 항공기의 특징과 함께 제시하고자 한다.

The demand for e-VTOL aircraft is expected to be increased rapidly in the future as a means of urban transportation due to operating cost reduction, eco-friendliness and convenience of vertical take-off and landing using pilot-aids automation system. However, there are many technical hurdles to be solved in securing safety and certification which are essential for commercialization and urban operation. So far, there is no e-VTOL aircraft that has received type certificate and standard airworthiness certificate due to the technical problems and safety requirement differences with conventional aircraft. The e-VTOL aircraft certification should also meet the equivalent level of safety required by the current airworthiness standards, but there are existing problems in securing safety and meeting current standards. In this study, the e-VTOL's certification problems and technical limitations in satisfying the current standards are presented.

키워드

과제정보

본 연구는 국토교통부 연구개발사업의 연구비 지원(21ACTO-B151661-03)에 의해 수행되었습니다.

참고문헌

  1. Hwang, C. J., "Status and Challenges of Urban Air Mobility Development," Current Industrial and Technological Trends in Aerospace, Vol. 16, No. 1, July 2018, pp. 33~41.
  2. EASA, "Proposed Means of Compliance with the Special Condition VTOL," May 2020.
  3. Courtin, C. and Hansman, R. J., "Safety Considerations In Emerging Electric Aircraft Architectures (MIT ICAT)," June 2018.
  4. Enforcement Regulations of the Aviation Act. "Article 119, Aviation fuel and oil," Ministry of Government Legistration, March 2021.
  5. Chang, C. K., "Factors Affecting Capacity Design of Lithium-Ion Stationary Batteries," MDPI, August 2019.
  6. Scott, J. and Darcy, E., "Safe Li-Ion batteries," NASA JSC, Public release notice, November 2016.
  7. AC 23.1309, "System safety analysis and assessment for part 23 airplanes," FAA, November 2011.
  8. FAR Part 23/27, "Airworthiness standards: Normal Category Airplanes/Rotorcraft," FAA.
  9. Wikipedia "Energy density & Specific energy," http://en.wikipedia.org/wiki/Energy_density
  10. Choi, J. W. and Hwang, C. J., "Establishing Safety Requirement and FHA(Functional Hazard Assessment) of OPPAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, July 2020, pp. 571~572.
  11. Choi, J. W. and Hwang, C. J., "Status and Approach on Certification Basis of eVTOL for Urban Air Mobility," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2019, pp. 621~622.
  12. Suk, J. Y., Lee, Y. S., Kim, S. J., Koo, H. J. and Kim, J. S., "System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests," Journal of Mechanical Science and Technology, Vol. 17, No. 5, May 2003, pp. 654~667.