DOI QR코드

DOI QR Code

장기 보관된 분리장치의 성능 및 노화에 관한 연구

Study of Aging and Performance About Separation Devices Has Been Stored

  • Kim, Dong-seong (Defense Reliability Center, Defense Agency for Technology and Quality) ;
  • Jin, Hong-Sik (Defense Reliability Center, Defense Agency for Technology and Quality)
  • 투고 : 2021.02.04
  • 심사 : 2021.05.06
  • 발행 : 2021.07.01

초록

본 연구에서는 국방 분야에서 분리장치로 사용되고 있는 파이로 장치 중 장기간 보관된 폭발볼트의 성능 및 노화에 관한 연구를 수행하였다. 연구를 위해 약 10년간 무기체계에 탑재되어 있던 폭발볼트를 확보하였으며, AIAA Standard 및 MIL-STD를 기반으로 성능 및 수명 평가 절차를 수립하였다. 성능 평가를 위해 먼저 비기능 검사를 수행하여 외적인 변화나 고장이 발생하였는지 확인하였으며, 내부 회로 및 구조에 이상이 없는지 회로검사와 X-ray 검사를 수행하였다. 비기능 검사가 통과된 시료에 대해서 작동 확인을 위한 성능 시험을 실시하였다. 성능 시험을 통해 폭발볼트의 분리 여부 및 분리시간을 측정하였으며, 일부 시료의 경우 잔여 수명 및 연장 가능성을 확인하기 위해 고온저장시험 후 성능 시험을 실시하였다. 마지막으로 시험 결과와 아레니우스 모델을 바탕으로 잔여 수명 및 신뢰도를 예측하였으며, 수명에 따른 신뢰도를 확인하였다.

In this study, a study on the performance and aging of explosive bolts stored for a long time among pyrotechnic mechanical devices(PMD) used as separation devices in the defense field is conducted. For this, explosive bolts that had been installed in the weapon system for about 10 years are secured. Performance and life extension test procedures are established based on the AIAA Standard and MIL-STD. Before performance evaluation, non-functional tests are performed to check whether external changes or failures occurred. Next, circuit inspection and X-ray tests are conducted to check the failure in internal circuits and structures. After that, performance test is carried out to confirm the operation of the samples that passed the non-functional test. Through this test, separation of bolt and separation time are measured, and some samples are tested after a high temperature storage test to confirm the remaining life and the possibility of extension. Finally, the remaining life and reliability are predicted based on the results of the test and the Arrhenius model to identify remaining shelf life and reliability depend on time.

키워드

참고문헌

  1. Kim, D. J., Jeong, D. H., Lee, Y. J. and Lee, Y. W., "Study on the Performance Evaluation of the Explosive Bolt that has been Natural Aging," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 3, 2017, pp. 84~90.
  2. Wells, W. W., Solid Rocket Booster Reliability Guidebook - Volume II, Probabilistic Design and Analysis Methods for Solid Rocket Boosters, SAE International, 1996, pp. 1~364.
  3. Kwon, K. T., Lee, S. J. and Kim, S. H., "Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 1, 2018, pp. 66~71. https://doi.org/10.6108/KSPE.2018.22.1.066
  4. Kim, D. S. and Jang, S. G., "Study on Aging Characteristics of Exploding Foil Initiator," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 8, 2020, pp. 581~588. https://doi.org/10.5139/JKSAS.2020.48.8.581
  5. American Institute of Aeronautics and Astronautics, Criteria for Explosive Systems and Devices on Space and Launch Vehicle, AIAA-S-113, 2016, pp. 1~139.
  6. Williams, M. R. and Matei, M. V., "The Decomposition of Some RDX and HMX Based Materials in One-Dimensional Time to Explosion Apparatus. Part 1. Time to Explosion and Apparent Activation Energy," Propellants, Explosives, Pyrotechnics, Vol. 31, No. 6, 2006, pp. 435~440. https://doi.org/10.1002/prep.200600058
  7. Lee, J. S., Hsu, C. K. and Chang, C. L., "A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX," Thermochimica Acta, Vol. 392, 2002, pp. 173~176. https://doi.org/10.1016/S0040-6031(02)00099-0
  8. Abd-Elhany, M., Elbeih, A. and Hassanein, S., "Thermal Behavior and Decomposition Kinetics of RDX and RDX/HTPB Composition Using Various Techniques and Methods," Central European Journal of Energetic Materials, Vol. 13, No. 3, 2016, pp. 714~735. https://doi.org/10.22211/cejem/64954
  9. Mcdonald, B. A., "Study of the Effects of Aging under Humidity Control on the Thermal Decomposition of NC/NG/BTTN/RDX Propellants," Propellants, Explosives, Pyrotechnics, Vol. 36, 2011, pp. 576~583. https://doi.org/10.1002/prep.200900094
  10. Benedict, A. G., Reliability-Confidence Combination for Small Sample Tests of Aerospace Ordnance Items, NASA Technical Report, 32-1165, 1967.
  11. Johnson, L. G., GMR Reliability Manual, Generam Motors Research Laboratories, GMR-302, 1960.
  12. Gao, H., Jin, T. and Mettas, A., "Designing Reliability Demonstration Tests for One-Shot Systems Under Zero Component Failures," IEEE Transactions on Reliability, Vol. 60, No. 1, 2011, pp. 286~294. https://doi.org/10.1109/TR.2010.2085552
  13. Kwon, Y. I., "Design of Bayesian Zero-Failure Reliability Demonstration Test for Products with Weibull Lifetime Distribution," Journal of Applied Reliability, Vol. 14, No. 4, 2014, pp. 220~224.