DOI QR코드

DOI QR Code

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion

하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정

  • Kim, Jina (Department of Aerospace Engineering, Konkuk University) ;
  • Lee, Changjin (Department of Aerospace Engineering, Konkuk University)
  • Received : 2021.02.05
  • Accepted : 2021.05.06
  • Published : 2021.07.01

Abstract

Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

파라핀 왁스는 높은 후퇴율 때문에 하이브리드 로켓의 연료로 많은 각광을 받고 있다. 하지만 파라핀 연료의 연소에서도 비정상적인 저주파수 연소압력 진동이 관찰되고 있는데, 이는 연료 표면에 형성된 액체층과 액적의 유입과 관련이 있는 것으로 추론된다. 본 연구는 액적에 의한 추가적 연소와 저주파수 연소불안정 발생과의 관계를 분석하였다. 한편, 액적의 발생은 관성력과 액체의 표면장력의 비로 정의되는 We수(Weber Number)와 액체층의 Re수(Reynolds Number)에 따라 변화하는 것으로 알려져 있다. 따라서 일차적으로 실험실 규모의 로켓을 사용하여 We수에 따른 연소불안정의 발생여부를 관찰하였다. We수의 조절은 산화제 유량 변화를 통한 관성력의 변화와 LDPE(Low Density Polyethylene) 첨가에 의한 표면장력의 변화를 통해 시도하였다. 저주파수의 연소불안정의 발생은 특정한 We수 이상에서만 관찰되었고 임계 We수가 존재하는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 이공분야기초연구사업(NRF-2018R1D1A1B07048676)의 지원으로 수행한 연구결과의 일부이며 지원해주신 한국연구재단에 감사드립니다.

References

  1. Karabeyoglu, M. A., Zilwa, S. D. and Zillac, G., "Modeling of Hybrid Rocket Low Frequency Instabilities," Journal of Propulsion and Power, Vol. 21, No. 6, 2005, pp. 1107~1116. https://doi.org/10.2514/1.7792
  2. Kim, J. and Lee, C. J., "Low Frequency Instability and Oscillating Boundary Layer in Hybrid Rocket Combustion," Journal of Mechanical Science and Technology, Vol. 34, pp. 4831~4839. https://doi.org/10.1007/s12206-020-1039-x
  3. Chae, H. S. and Lee, C. J., "Controlling Low-Frequency Instability with Fuel Inserts in Hybird Rocket Combustion," Journal of Propulsion and Power, Vol. 37, No. 1, 2021, pp. 1~7. https://doi.org/10.2514/1.B38361
  4. Karabeyoglu, M. A. and Cantwell, B. J, "Combustion of Liquefying Hybrid Rocket Propellants: Part 2, Stability of Liquid Films," Journal of Propulsion and Power, Vol. 18, No. 3, 2002, pp. 621~630. https://doi.org/10.2514/2.5976
  5. Petrarolo, A., Kobald, M. and Schlechtriem, S., "Understanding Kelvin-Helmholtz Instability in Paraffin-Based Hybrid Rocket Fuels," Experiments in Fluids, 2018, pp. 59~62.
  6. Chandler, A., Jens, E., Cantwell, B. J. and Hubbard, G. S., "Visualization of Liquid Layer Combustion of Paraffin Fuel for Hybrid Rocket Applications," The 48th Joint Propulsion Conference & Exhibit, 2012, AIAA 2012~3961.
  7. Kim, J. A. and Lee, C. J., "Entrainment of Fuel Droplets and Unstable Pressure Oscillations in Hybrid Rocket Combustion," The 12th International Symposium on Special Topics in Chemical Propulsion & Energetic Materials (ISICP), 2020.
  8. Kitano, T., Kaneko, K., Kurose, R. and Komori, S., "Large-eddy Simulations of Gas- and Liquie-fueld Combustion Instabilities in Back-step Flows," Combustion and Flame, Vol. 170, 2016, pp. 63~78. https://doi.org/10.1016/j.combustflame.2016.05.005
  9. Karabeyoglu, A., Altman, D. and Cantwell J., "Combustion of Liquefying Hybrid Propellants: Part 1, General Theory," Journal of Propulsion and Power, Vol. 18, No. 3, 2002, pp. 610~620. https://doi.org/10.2514/2.5975
  10. Jens, E. T., Karp, A. C., Miller, V. A., Hubbard, G. S. and Cantwell, B. J., "Experimental Visualization of Hybrid Combustion: Results at Elevated Pressure," Journal of Propulsion and Power, Vol. 36, No. 1, 2020, pp. 33~46. https://doi.org/10.2514/1.b37416
  11. Sawant, P., Ishii, M. and Mori, M., "Droplet Entrainment Correlation in Vertical Upward Cocurrent Annular Two-phase Flow," Nuclear Engineering and Design, Vol. 238, 2008, pp. 1342~1352. https://doi.org/10.1016/j.nucengdes.2007.10.005
  12. Piscitelli, F., Saccone, G., Gianvito, A., Cosenito, G. and Mazzola, L., "Microcrystalline Paraffin Wax as Fuel for Hybrid Rocket Engine," The 6th EUCASS, June 2015.
  13. Karabeyoglu, A., Altman, D. and Cantwell, J., "Combustion Oscillations in High regression rate Hybrid Rockets," The 39th Joint Propulsion Conference & Exhibit, 2003, AIAA-2003-4465.
  14. Budakli, M., "Hydrodynamics and Heat Transfer in Gas-Driven Liquid Film Flow," PhD thesis, Institute of Technical Thermodynamics of the Technische Universitat Darmstadt.
  15. Lee, D. E. and Lee, C. J., "Equivalence ratio variation and combustion instability in hybrid rocket," Journal of Mechanical Science and Technology, Vol. 33, No. 19, 2019, pp. 5033~5042. https://doi.org/10.1007/s12206-019-0942-5
  16. DeSain, J. D., Brady, B. B., Metzler, K. M., Curtiss, T. J. and Thomas, V., "Tensile Tests of Paraffin Wax for Hybrid Rocket Fuel Grains," The 45th Joint Propulsion Conference & Exhibit, August 2009, AIAA 2009-5115.
  17. Chen, S., Tang, Y., Zhang, W., Ruiqi, S., Yu, H., Ye, Y. H. and DeLuca, L. T., "Innovative Methods to Enhance the Combustion Properties of Solid Fuels for Hybrid Rocket Propulsion," Aerospace, Vol. 6, No. 47.