• Title/Summary/Keyword: 액체층

Search Result 206, Processing Time 0.033 seconds

Local Mean Water Layer Thickness in Countercurrent Stratified Two -Phase Fllow (물-증기 역류 성층이상유동에서의 국부 평균 액체층 두께)

  • Kim, Hho-Jung;Kim, Kap
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.947-958
    • /
    • 1986
  • 물-증기 역류 성층이상유동에서의 평균 액체층 두께가 여러가지 경사각과 종횡비에 따라 측정되었다. 난류유동에 있어서 전단응력분포의 선형화와 von Karman의 혼합길이 이론을 근거로 평균 액체층의 두께에 대한 관계식이 제시되었으며 실험결과와 잘 일치하였음을 보였다. 접촉면에서의 조파저항이 고려되지 않은 해석결과는, 수평 성층유동의 경우에, 평균 액체층 두께보다는 오히려 파곡까지의 액체층 두께를 예측하고 있는 것으로 나타났다. 또한 평균 액체층 두께에 대한 실험 상관관계식이 계산시 편의를 위해 쉽게 인지할 수 있는 매개변수들의 항들롤 제시되었다.

접착 테이프형 액체 누설 감지 박막 센서

  • Han, Guk-Hui;Kim, Yun-Jung;Jeong, Jong-Yun;Lee, Min-Gyeong;Gang, Han-Rim;Kim, Jung-Gil;Lee, Won-Yeong;Yu, Hong-Geun;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.355-355
    • /
    • 2012
  • 액체 누설을 감지하는 센서를 개발하였다. 이 센서는 경보 장치를 포함하며 접착 테이프형태의 박막 센서이다. 센서는 총 4개의 층으로 구성되어 있다. 각 층의 명칭은 접착제층, 베이스 필름층, 기판 필름층, 보호 필름층이다. 감지선의 사용량을 최소화하여 기판 필름층 위에는 총 4개의 선이 있다. 전도선 3개와 저항선 1개이다. 4개의 선들은 기판 필름층에 전도성 은나노 잉크를 그라비어인쇄기를 이용하여 센싱 회로를 인쇄하였으며 이 기술의 이 센서의 가장 큰 특징이다. 누수 발생 시에 저항선과 전도선에 액체가 접촉되어 회로 상에 교차하는 내부저항의 전압 변화를 모니터링하여 누수를 감지하는 방식의 센서이다. 감지선에 전원을 양방향으로 번갈아 인가함으로써 수분의 저항 값 증가 및 양극화를 방지하였다. 그로 인해 기존의 센서에 비해 좀 더 안정적이고 정확한 감지를 할 수 있다. 설치 후 센서가 마모되거나 손상될 시 간단하게 재설치 할 수 있다는 장점도 있다. 액체 누설 후에도 별도의 건조시간이 필요하지 않다. 표면에 남아있는 액체를 제거하여 즉시 재사용하는 것이 가능하다. 액체누설 감지 시스템은 액체누설 감지 필름 센서를 포함하며, 표시부와 경고음 발생부 등 전체를 제어한다. 표시부의 누설 위치 표시 단위는 미터(m)이며 최소 0.1 m 단위까지 표시한다. 이 액체누설 감지 시스템을 이용하여 누설 위치 감지 실험 및 액체별 누설 위치 감지 실험을 진행하였다.

  • PDF

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes (삼상유동층 공정에서 수력학적 Similarity 해석)

  • Lim, Ho;Lim, Hyun-Oh;Jin, Hae-Ryoung;Lim, Dae-Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.790-797
    • /
    • 2011
  • Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

Influence of medium addition and agitation on the production of embryos in isolated microspore culture of hot pepper (Capsicum annuum L.) (고추의 소포자 배양 시 배지 첨가와 진탕이 배의 생산에 미치는 영향)

  • An, Dong-Ju;Park, Eun-Joon;Kim, Moon-Za
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.30-41
    • /
    • 2011
  • The influences of the agitation as well as the addition of medium during culture on the production of embryos were invested in isolated microspore culture of hot pepper (Capsicum annuum L.). When the culture medium was added during initial liquid culture step of liquid-double layer culture, the embryo yield and quality greatly increased. The most effective time point for medium addition was 5 days after the culture commenced. On the other hand, the effect of medium addition at later double layer culture step in liquid-double layer culture on the embryo production was less compared to that of medium addition during the initial liquid culture step. Agitating the culture for 1 week during later double layer culture step in liquid-double layer culture effectively increased the production of normal cotyledonary embryos. In the case of liquid culture, agitating the culture for 1 week from 7 days after the culture commenced was also effective for embryo development. However, when the total agitation time was longer (2 to 3 weeks) during liquid-double layer culture or liquid culture, the embryos developed abnormally in both cases. The normal cotyledonary embryos obtained in this study successfully developed to plants when transferred to regeneration media. These regenerated plants were either diploid or haploid, and there was a difference in the number of chloroplasts between guard cells of diploid and haploid. These results can be used as an important data for developing an efficient microspore culture system with high quality embryo production in hot pepper.

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.

Tape-Type Liquid Leakage Film Sensor (액체누설 감지용 테이프형 필름센서)

  • Yu, D.K.;Kim, K.S.;Yub, H.K.;Han, G.H.;Jin, D.J.;Kim, J.H.;Han, S.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • The adhesive-tape of a liquid leak film sensor including the alarm system is developed. The sensing film is composed of three layers such as base film layer, conductive line layer, and protection film layer. The thickness of film is 300~500 um, the width is 3.55 cm, and the unit length is 200 m. On the conductive line layer, three conducting lines and one resistive line are formulated by the electronic printing method with a conducting ink of silver-nano size. When a liquid leaks for the electricity to be conducted between the conductive line and the resistive line, the position of leakage is monitored by measuring the voltage varied according to the change of resistance between two lines. The error range of sensing position of 200 m film sensor is ${\pm}1m$.

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

Theory of Surface Tension and Viscosity of Liquid (액체의 표면장력과 점도에 관한 이론)

  • Pak, Hyung-suk
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 1968
  • 액체 분자는 고체, 천이상태 및 기체와 같은 자유도를 갖는다는 액체구조에 관한 천이상태이론을 적용하여 액체의 표면장력과 점도를 계산하여 측정 치와 좋은 일치를 얻었다. 표면장력을 계산함에 있어서 표면 각층의 밀도는 이웃 층 사이의 밀도를 주는 관계식으로부터 쉽게 얻었다. 그리고 액체가 점성 흐름을 할때 활성화된 분자는 흐르는 방향으로는 기체와 같은 자유도를 가지나, 이에 직교한 평면상에서는 천이상태 및 기체와 같은 자유도를 갖는다고 가정하였다.

  • PDF