DOI QR코드

DOI QR Code

사전 시뮬레이션과 점항법 유도를 이용한 고정익 무인기의 자동 착륙 접근

Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV

  • 투고 : 2020.10.28
  • 심사 : 2021.05.06
  • 발행 : 2021.07.01

초록

본 논문에서는 고정익 무인기의 점항법을 이용한 자동 착륙 접근 유도에 대해 기술한다. 본 연구의 주요 특징은 Dubin's 모델 기반 2D 사전 시뮬레이션을 이용하여 자동 착륙 접근에 필요한 경로점을 생성하고, 또한 사전 시뮬레이션으로부터 활주로까지의 남은 시간을 예측하여 이를 고도 제어에 활용한다. 설계한 알고리즘의 성능은 시뮬레이션과 비행 시험을 통해 검증한다.

This paper describes an automatic landing approach algorithm for fixed-wing UAVs using waypoint guidance. The proposed algorithm utilizes simple 2D Dubin's vehicle pre-simulations in planning the waypoints for landing approach. The remaining time to reach the runway is also estimated in the pre-simulation, and it is used for altitude control. The performance of the designed algorithm was verified by simulations and flight tests.

키워드

과제정보

본 논문은 한국항공우주연구원(과제명: 차동 브레이크 고정익 무인기의 지상활주 및 자동이착륙 기술 개발)의 연구비 지원(과제번호: 20CAUV-B155368-02)을 받아 진행된 연구임.

참고문헌

  1. Kanistras, K., Martins, G. and Rutherford, M. J., "A Survey of Unmanned Aerial Vehicles (UAVs) for Traffic Monitoring," Proceeding of the International Conference on Unmanned Aircraft Systems, July 2015, pp. 2643~2666.
  2. Dunbabin, M. and Marques, L., "Robots for environmental monitoring: Significant advancements and applications," IEEE Robotics and Automation magazine, Vol. 19, Iss. 1, 2012, pp. 24~39. https://doi.org/10.1109/MRA.2011.2181683
  3. Jack, M., "Strategic Significance of Drone Operations for Warfare," E-International Relations, August 2013, pp. 1~13.
  4. Kim, J. W. and Shim, S, R., "A case Study on the Evolutionary Development of U.S Unmanned Aerial Vehicles (UAVs): Focusing on Tactical/Strategic Fixed-wing UAVs," Journal of Advances in Military Studies, Vol. 3, No. 2, 2020, pp. 17~46. https://doi.org/10.37944/jams.v3i2.69
  5. Kim, J. H., Kim, T. H. and Yoo, D. H., "Analysis of the Factors and Patterns Associated with Death in Aircraft Accidents and Incidents Using Data Mining Techniques," Journal of Digital Convergence, Vol. 17, No. 9, 2019, pp. 79~88.
  6. Riseborough, P., "Automatic Take-Off and Landing Control for Small UAV's," Proceeding of the IEEE 5th Asian Control Conference, July 2004, pp. 754~762.
  7. Lim, I. G. and Ra, S. W., "Waypoints Altitude Planning for Terrain Collision Avoidance and Maneuverability of an Unmanned Aerial Vehicle," The Journal of Korean Institute of Information Technology, Vol. 16, No. 9, 2018, pp. 31~41.
  8. Paul, W. and Michael. C., "Intelligent Landing System for Landing UAVs at Unsurveyed Airfields," Proceeding of the 28th International Congress of the Aeronautical Sciences, September 2012, pp. 1~19.
  9. Cho, A., Kim, J. H., Lee, S. H., Choi, S. J., Lee, B. R., Kim, B. S., Park, N. H., Kim, D. K. and Kee, C. D., "Fully Automatic Taxiing, Takeoff and Landing of a UAV using a Single-Antenna GPS Receiver only," Proceeding of the International Conference on Control, Automation and System, October 2007, pp. 821~825.
  10. Sefer, K. and Omer, C., "Autonomous Navigation and Landing Tasks for Fixed Wing Small Unmanned Aerial Vehicles," Acta Polytechnica Hungarica, Vol. 7, No. 1, 2010, pp. 87~102.
  11. Randal, W. B. and Timothy, W. M., "Small Unmanned Aircraft," Princeton Publication, 2012.
  12. Park, S. H., "Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV," International Journal of Aeronautical and Space Sciences, Vol. 18, No. 2, 2017, pp. 334~351. https://doi.org/10.5139/IJASS.2017.18.2.334
  13. Federal Aviation Administration, "Airplane Flying Handbook(FAA-H-8083-3B)," United States Department of Transportation, 2016.