DOI QR코드

DOI QR Code

A five-variable refined plate theory for thermal buckling analysis of composite plates

  • Hashim, Hussein A. (Department of Mechanical Engineering, University of Baghdad) ;
  • Sadiq, Ibtehal Abbas (Department of Mechanical Engineering, University of Baghdad)
  • Received : 2021.03.30
  • Accepted : 2021.06.18
  • Published : 2021.05.25

Abstract

This research is devoted to investigate the thermal buckling analysis behaviour of laminated composite plates, by applying an analytical model based on a refined plate theory (RPT) with five independent unknown variables. The theory accounts for parabolic distribution of the transvers shear strains through the plate thickness, and satisfied the zero traction boundary condition on the surface without using shear correction factors, hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical procedure to obtain critical buckling temperature for simply supported boundary condition of symmetric and antisymmetric cross-ply and angle-ply laminated plates. MATLAB 2018 program is used to investigate the effect of thickness ratio (a/h), aspect ratio (a/b), orthogonality ratio (E1/E2), coefficient of thermal expansion ratio (α21) and numbers of layers on thermal buckling of laminated plate. It can be concluded that this theory gives good results when compared with other theory.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Natural Science Foundation.

References

  1. Abdul-Majeed, W.R., Jweeg, M.J., and Jameel, A.P.D.A.N. (2011), "Thermal buckling of rectangular plates with different temperature distribution using strain energy method", J. Eng., 17(5), 1047-1065.
  2. Abdul, Z.A.K. and Majeed, W.I. (2020)," Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. http://doi.org/10.12989/cme.2020. 2.2.125.
  3. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysisof antisymmetric laminatedreinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  4. Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83, https://doi.org/10.12989/cac. 2021.27.1.073.
  5. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. http://doi.org/10.12989/scs.2019.33.1.081.
  6. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti- symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422, https://doi.org/10.12989/sss.2020.25.4.409.
  7. Bensaid, I., Bekhadda, A. and Kerboua, B. (2021), "Size-dependent bending and stability analysis of FG nano-beams via a novel simplified first-order shear deformation beam theory", Compos. Mater. Eng., 3(1), 71-88. https://doi.org/10.12989/cme. 2021.3.1.071.
  8. Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A. A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/2F1099636211426386.
  9. Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model", Compos. Struct., 142(10), 238-253. https://doi.org/10.1016/j.Compstruct 2016.01.082.
  10. Chang, J.S. and Leu, S.Y. (1991), "Thermal buckling analysis of antisymmetric angle-ply laminates based on a higher-order displacement field", Compos. Sci. Technol., 41(2) 109-128. https://doi.org/10.1016/0266-3538(91)90023-I.
  11. Chen, W.J., Lin, F.D. and Chen, L.W. (1991), "Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution", Comput. Struct., 41(4), 637-645. https://doi.org/10.1016/0045-7949(91)90176-M.
  12. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  13. Ghadimi, M.G. (2020), "Buckling of non-sway Euler composite frame with semi-rigid connection", Compos. Mater. Eng., 2(1), 13-24. http://doi.org/10.12989/cme.2020.2.1.013.
  14. Hussein, E. and Alasadi, S. (2018), "Experimental and theoretical stress analysis investigation for composite plate under thermal load", Kufa J. Eng., 9(1), 205-221. http://doi.org/10.30572/2018/KJE/090114.
  15. Jameel, A.N. (2013), "Buckling analysis of composite plates under thermo-mechanical loading", Al-Rafidain Univ. Coll. Sci., (32).
  16. Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89(2), 197-205. https://doi.org/10.1016/j. compstruct.2008.07.017.
  17. Kumar, J. and Gupta, A. (2014), "Thermal buckling of symmetric cross-ply laminated plate", Int. J. Sci. Res., 3(6), 2488 - 2491. http://doi.org/10.32628/ijsrset207436.
  18. Kumar, R., Sharma, A. and Kumar, R. (2013), "Thermal buckling analysis of a laminated composite plate resting on elastic foundation using Stochastic finite element method based on micromechanical model", Int. J. Business Enterprise Appl.
  19. Matsunaga, H. (2006), "Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 72(2), 177-192. https://doi.org/10.1016/j.compstruct.2004.11.016.
  20. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under Various boundary conditions", Steel Compos. Struct., 36(3), 355-367. http://doi.org/10.12989/scs.2020.36.3.355.
  21. Noor, K. and Scott, B.W. (1992), "Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive muitilayered angle-ply plates", J. Appl. Mech T., 59(4). https://doi.org/10.1115/1.2894052.
  22. Ounis, H. and Belarbi, M.-O. (2017), "On the thermal buckling behaviour of laminated composite plates with cut-outs", J. Appl. Eng. Sci. Technol., 3(2), 63-69.
  23. Prabhu, M. R. and Dhanaraj, R. (1994), "Thermal buckling of laminated composite plates", Comput. Struct., 53(5), 1193-1204. https://doi.org/10.1080/01495738708927017.
  24. Reddy, J.N (2004), Mechanics of Laminated Composite Plates and Shells Theory Analysis, CRC Press, Boca Raton, Florida, U.S.A.
  25. Sadiq, I.A. and Majeed, W.I., "Thermal buckling of angle-ply laminated plates using new displacement function", J. Eng., 25(12), 96-113. http://doi.org/10.31026/j.eng.2019.12.08.
  26. Shu, X. and Sun, L. (1994), "Thermomechanical buckling of laminated composite plates with higher-order transverse shear deformation", Comput. Struct., 53(1), 1-7. https://doi.org/10.1016/0045-7949/2894/2990123-6
  27. Singh, R.K. (2014), "Thermal buckling analysis of laminated composite shell panel embedded with shape memory alloy fibre under TD and TID", MTech thesis, National Institute of Technology Rourkela, Rourkela, India.
  28. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  29. Thangaratnam, K.R. and Ramachandran, J. (1989), "Thermal buckling of composite laminated plates", Comput. Struct., 32(5), 1117-1124. https://doi.org/10.1016/0045- 7949(89)90413-6.
  30. Tounsi, A., Atmane, H.A., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19, http://doi.org/10.12989/cme.2019.1.1.001.
  31. Xing, Y. and Wang, Z. (2017), "Closed form solutions for thermal buckling of functionally graded rectangular thin plates", Appl. Sci., 7(12), 1256. http://doi.org/10.3390/app7121256.