DOI QR코드

DOI QR Code

Modeling in System Engineering: Conceptual Time Representation

  • Received : 2021.03.05
  • Published : 2021.03.30

Abstract

The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.

Keywords

References

  1. Furia, C.A., Mandrioli, D., Morzenti, A.C., Rossi, M.: Modeling Time in Computing: A Taxonomy and a Comparative Survey. ACM Computing Surveys 6(issue), xx-yy (2010). https://doi.org/10.1145/1667062.1667063
  2. Selic, B.: Using UML for modeling complex real-time systems. In: Mueller F., Bestavros A. (eds.) Languages, Compilers, and Tools for Embedded Systems. LCTES, Lecture Notes in Computer Science, vol. 1474. Springer, Berlin (1998). https://doi.org/10.1007/BFb0057795
  3. Kenny, I.C.: Biomechanical and Modelling Analysis of Shaft Length Effects on Golf Driving Performance. Faculty of Life and Health Sciences of the University of Ulster. Thesis Submitted for the Degree of Doctor of Philosophy, University of Ulster (2006)
  4. Panjabi, M.: Validation of Mathematical Models. Journal of Biomechanics 12(3), 238 (1979). DOI: 10.1016/0021-9290(79)90148-9
  5. Mayr, H.C., Thalheim, B.: The Triptych of Conceptual Modeling: A Framework for a Better Understanding of Conceptual Modeling. Software and Systems Modeling 20(issue), 7-24 (2021). https://doi.org/10.1007/s10270-020-00836-z
  6. Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2021). https://plato.stanford.edu/archives/spr2021/entries/concepts/
  7. Janiak, A.: Kant's Views on Space and Time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2020). https://plato.stanford.edu/archives/spr2020/entries/kantspacetime/
  8. Al-Fedaghi, S.: Diagrammatic Formalism for Complex Systems: More than One Way to Eventize a Railcar System. International Journal of Computer Science and Network Security (IJCSNS) 21(2), 130-141 (2021). DOI: 10.22937/IJCSNS.2021.21.2.15
  9. Al-Fedaghi, S.: UML Modeling to TM Modeling and Back. International Journal of Computer Science and Network Security (IJCSNS) 21(1), 84-96 (2021). https://doi.org/10.22937/IJCSNS.2021.21.1.13
  10. Al-Fedaghi, S.: Advancing Behavior Engineering: Toward Integrated Events Modeling. International Journal of Computer Science and Network Security (IJCSNS) 20(12), 95-107 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.10
  11. Currie, A.: Science & Speculation. Erkenn (Preprint) 1-23 (2021). https://doi.org/10.1007/s10670-020-00370-w
  12. Wolff K.E., Yameogo W.: Time Dimension, Objects, and Life Tracks. A Conceptual Analysis. In: Ganter B., de Moor A., Lex W. (eds.) Conceptual Structures for Knowledge Creation and Communication. ICCS 2003. LNCS, vol. 2746, pp. 188-200. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-45091-7_13
  13. Crang, M.: Rhythms of the City: Temporalised Space and Motion. In: Timespace: Geographies of Temporality, pp. 187-207. Routledge, London (2001)
  14. Lakoff, G., & Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)
  15. Boroditsky, L.: Metaphoric Structuring: Understanding Time through Spatial Metaphors. Cognition 75(issue), 1-28 (2000) https://doi.org/10.1016/S0010-0277(99)00073-6
  16. Wolff, K.E.: Temporal Concept Analysis. In: E. M. Nguifo, V. Duquenne and M. Liquiere (eds.), 2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 91-107. Stanford University, Palo Alto, CA (2001)
  17. Al-Fedaghi, S.: Conceptual Temporal Modeling Applied to Databases. International Journal of Advanced Computer Science and Applications (IJACSA) 12(1), xx-yy (2021). DOI: 10.14569/IJACSA.2021.0120161
  18. Al-Fedaghi, S.: Computer Program Decomposition and Dynamic/Behavioral Modeling. Int. J. Comput. Sci. Netw. 20(8), 152-163 (2020). DOI: 10.22937/IJCSNS.2020.20.08.16
  19. Al-Fedaghi, S., Al-Fadhli, J.: Thinging-Oriented Modeling of Unmanned Aerial Vehicles. International Journal of Advanced Computer Science and Applications (IJACSA) 11(5), 610-619 (2020). DOI 10.14569/IJACSA.2020.0110575
  20. Al-Fedaghi, S., Haidar E.: Thinging-Based Conceptual Modeling: Case Study of a Tendering System. Journal of Computer Science 16(4), 452-466. DOI: 10.3844/jcssp.2020.452.466
  21. Galton, A.: The Ontology of Time and Process. Third Interdisciplinary School on Applied Ontology, Bozen-Bolzano (2016). Accessed Feb. 20, 2021. https://isao2016.inf.unibz.it/wpcontent/uploads/2016/06/bolzano-notes.pdf
  22. Bergson, H.: Time and Free Will: An Essay on the Immediate Data of Consciousness. George Allen & Unwin, London (1950)
  23. Spring, J.M., Hatleback, E.: Thinking About Intrusion Kill Chains as Mechanisms. Journal of Cybersecurity 3(3), 185-197 (2017). DOI: 10.1093/cybsec/tyw012
  24. Russel, N., van der Aalst, W., ter Hofstede, A., Wohed, P.: On the Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In: Proc. of the Third Asia-Pacific Conference on Conceptual Modelling. APCCM (2006)
  25. OMG.: UML 2.0 Superstructure Specification. Technical report. In: United Modeling Language 2.0 Proposal. Sparx Systems (2004)
  26. Machamer, P., Darden, L., Craver, C.F.: Thinking About Mechanisms. Philos. Sci. 67(issue), 1-25 (2000) https://doi.org/10.1086/392759
  27. Jorgensen, S.E., Gromiec, M.J.: Conceptual Models. Devel. Environ. Modelling 21(issue), 211-223 (2001) https://doi.org/10.1016/S0167-8892(01)80006-3
  28. Smyrk, J.R.: The ITO Model: A Framework for Developing and Classifying Performance Indicators. In: Australasian Evaluation Society, International Conference, Sydney, Australia (1995)
  29. Zwikael, O., Smyrk, J.: Project Management for the Creation of Organisational Value. In: The Input-Transform-Outcome (ITO) Model of a Project. Springer-Verlag, London (2011). DOI: 10.1007/978-1-84996-516-3_2
  30. Theodoulidis, C.I., Loucopoulos, P.: The Time Dimension in Conceptual Modelling. Information Systems 16(3), 273-300 (1991) https://doi.org/10.1016/0306-4379(91)90002-Q
  31. Ingram, D., Tallant, J.: Presentism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2018). https://plato.stanford.edu/archives/spr2018/entries/presentism/
  32. Mitsch, S., Platzer, A., Retschitzegger, W., Schwinger, W.: Logic-Based Modeling Approaches for Qualitative and Hybrid Reasoning in Dynamic Spatial Systems. ACM Computing Surveys 48(1), article 3 (2015). https://doi.org/10.1145/2764901