과제정보
This work was supported by NIT Raipur, India.
참고문헌
- D. Barbieri, E. Hernandez and A. Mayeli, Tiling by lattices for locally compact abelian groups, C. R. Math., 355(2017), 193-199. https://doi.org/10.1016/j.crma.2016.11.017
- J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal., 14(3)(2004), 423-456. https://doi.org/10.1007/BF02922099
- J. J. Benedetto and M. T. Leon, The construction multiple dyadic minimally supportrd frequency wavelets on Rd, The functional and harmonic analysis of wavelets and frames, 43--74, Contemp. Math. 247, Amer. Math. Soc., 1999.
- M. Bownik, Riesz wavelets and generalized multiresolution analysis, Appl. Comput. Harmonic. Anal., 14(3)(2003), 181-194. https://doi.org/10.1016/S1063-5203(03)00022-8
- M. Bownik and M. S. Jakobsen, On Wilson bases in L2(Rd), SIAM J. Math. Anal., 49(5)(2017), 3999-4023. https://doi.org/10.1137/17M1122190
- M. Bownik and J. Jasper, Existence of frames with prescribed norms and frame operator, Appl. Numer, Harmon. Anal., 4(2015), 103-117.
- D. Chen, On the splitting trick and wavelet frame packets, SIAM J. Math. Anal., 31(4)(2000), 726-739. https://doi.org/10.1137/S0036141097323333
- B. Currey and A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group, Monatsh. Math., 162(2011), 119-142. https://doi.org/10.1007/s00605-009-0159-2
- I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27(1986), 1271-1283. https://doi.org/10.1063/1.527388
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- X. Fang and X. H. Wang, Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl., 2(1996), 315-327. https://doi.org/10.1006/jmaa.1996.0207
- S. S. Goh, B. Han and Z. Shen, Tight periodic wavelet frames and approximation orders, Appl. Comput. Harmon. Anal., 31(2011), 228-248. https://doi.org/10.1016/j.acha.2010.12.001
- S. S. Goh and K. M. Teo, Extension principles for tight wavelet frames of periodic functions, Appl. Comput. Harmon. Anal., 25(2)(2008), 168-186. https://doi.org/10.1016/j.acha.2007.10.004
- S. Grepstad and N. Lev, Multi-tiling and Riesz bases, Adv. Math., 252(2014), 1-6. https://doi.org/10.1016/j.aim.2013.10.019
- S. Grepstad and N. Lev, Riesz bases, Meyer's quasicrystals, and bounded remainder sets, Trans. Amer. Math. Soc., 370(2018), 4273-4298. https://doi.org/10.1090/tran/7157
- B. Han and R.-Q. Jia, Characterization of Riesz bases of wavelets generated from multiresolution analysis, Appl. Comput. Harmon. Anal., 23(2007), 321-345. https://doi.org/10.1016/j.acha.2007.02.001
- E. Hernandez, X. Wang and G. Weiss, Smoothing minimally supported frequency wavelets, I, J. Fourier Anal. Appl., 2(1996), 329-340.
- E. Hernandez, X. H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets, II, J. Fourier Anal. Appl., 3(1997), 23-41. https://doi.org/10.1007/BF02647945
- A. Iosevich, C. K. Lai, and A. Mayeli, Tight wavelet frame sets in finite vector spaces, Appl. Comput. Harmon. Anal., 46(2019), 192-205. https://doi.org/10.1016/j.acha.2017.10.005
- E. A. Lebedeva and J. Prestin, Periodic wavelet frames and time-frequency localization, Appl. Comput. Harmon. Anal., 37(2)(2014), 347-359. https://doi.org/10.1016/j.acha.2014.02.002
- A. Mayeli, Riesz wavelets, tiling and spectral sets in LCA groups, Complex Anal. Oper. Theory, 13(2019), 1177-1195. https://doi.org/10.1007/s11785-018-0843-0
- C. Monico and M. Elia, Note on an additive characterization of quadratic residues modulo p, J. Comb. Inf. Syst. Sci., 31(2006), 209-215.
- L. S. Pontryagin, Topological groups, Princeton Univ. Press, 1946.
- S. P. Raja, Bezier and B-spline curves-a study and its application in wavelet decomposition, Int. J. Wavelets Multiresolut. Inf. Process., 18(4)(2020), 2050030, 38 pp. https://doi.org/10.1142/s0219691320500307
- F. A. Shah, O. Ahmad and N. A. Sheikh, Orthogonal gabor systems on local fields, Filomat, 31(2017), 5193-5201. https://doi.org/10.2298/FIL1716193S
- F. A. Shah and L. Debnath, Tight wavelet frames on local fields, Analysis, 33(2013), 293-307.
- F. A. Shah and A. Wahid, Wavelet packets on locally compact abelian groups, An. St. Univ. Ovidius Constanta Ser. Mat., 18(2)(2010), 223-239.
- S. H. Srivastava and F. A. Shah, AB-wavelet frames in L2(Rn), Filomat, 33(2019), 3587-3597. https://doi.org/10.2298/FIL1911587S
- Y. Wang, Wavelets, tiling and spectral sets, Duke Math. J., 114(1)(2002), 43-57. https://doi.org/10.1215/S0012-7094-02-11413-6