DOI QR코드

DOI QR Code

Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups

  • 투고 : 2019.09.30
  • 심사 : 2021.01.11
  • 발행 : 2021.06.30

초록

In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transform. We present two approaches (for stationary and non-stationary wavelets) to construct the scaling function for L2(G) and, using the scaling function, we construct an orthonormal wavelet basis for L2(G). We propose an open problem related to the extension principle for Riesz wavelets in locally compact abelian groups.

키워드

과제정보

This work was supported by NIT Raipur, India.

참고문헌

  1. D. Barbieri, E. Hernandez and A. Mayeli, Tiling by lattices for locally compact abelian groups, C. R. Math., 355(2017), 193-199. https://doi.org/10.1016/j.crma.2016.11.017
  2. J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal., 14(3)(2004), 423-456. https://doi.org/10.1007/BF02922099
  3. J. J. Benedetto and M. T. Leon, The construction multiple dyadic minimally supportrd frequency wavelets on Rd, The functional and harmonic analysis of wavelets and frames, 43--74, Contemp. Math. 247, Amer. Math. Soc., 1999.
  4. M. Bownik, Riesz wavelets and generalized multiresolution analysis, Appl. Comput. Harmonic. Anal., 14(3)(2003), 181-194. https://doi.org/10.1016/S1063-5203(03)00022-8
  5. M. Bownik and M. S. Jakobsen, On Wilson bases in L2(Rd), SIAM J. Math. Anal., 49(5)(2017), 3999-4023. https://doi.org/10.1137/17M1122190
  6. M. Bownik and J. Jasper, Existence of frames with prescribed norms and frame operator, Appl. Numer, Harmon. Anal., 4(2015), 103-117.
  7. D. Chen, On the splitting trick and wavelet frame packets, SIAM J. Math. Anal., 31(4)(2000), 726-739. https://doi.org/10.1137/S0036141097323333
  8. B. Currey and A. Mayeli, Gabor fields and wavelet sets for the Heisenberg group, Monatsh. Math., 162(2011), 119-142. https://doi.org/10.1007/s00605-009-0159-2
  9. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27(1986), 1271-1283. https://doi.org/10.1063/1.527388
  10. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
  11. X. Fang and X. H. Wang, Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl., 2(1996), 315-327. https://doi.org/10.1006/jmaa.1996.0207
  12. S. S. Goh, B. Han and Z. Shen, Tight periodic wavelet frames and approximation orders, Appl. Comput. Harmon. Anal., 31(2011), 228-248. https://doi.org/10.1016/j.acha.2010.12.001
  13. S. S. Goh and K. M. Teo, Extension principles for tight wavelet frames of periodic functions, Appl. Comput. Harmon. Anal., 25(2)(2008), 168-186. https://doi.org/10.1016/j.acha.2007.10.004
  14. S. Grepstad and N. Lev, Multi-tiling and Riesz bases, Adv. Math., 252(2014), 1-6. https://doi.org/10.1016/j.aim.2013.10.019
  15. S. Grepstad and N. Lev, Riesz bases, Meyer's quasicrystals, and bounded remainder sets, Trans. Amer. Math. Soc., 370(2018), 4273-4298. https://doi.org/10.1090/tran/7157
  16. B. Han and R.-Q. Jia, Characterization of Riesz bases of wavelets generated from multiresolution analysis, Appl. Comput. Harmon. Anal., 23(2007), 321-345. https://doi.org/10.1016/j.acha.2007.02.001
  17. E. Hernandez, X. Wang and G. Weiss, Smoothing minimally supported frequency wavelets, I, J. Fourier Anal. Appl., 2(1996), 329-340.
  18. E. Hernandez, X. H. Wang and G. Weiss, Smoothing minimally supported frequency wavelets, II, J. Fourier Anal. Appl., 3(1997), 23-41. https://doi.org/10.1007/BF02647945
  19. A. Iosevich, C. K. Lai, and A. Mayeli, Tight wavelet frame sets in finite vector spaces, Appl. Comput. Harmon. Anal., 46(2019), 192-205. https://doi.org/10.1016/j.acha.2017.10.005
  20. E. A. Lebedeva and J. Prestin, Periodic wavelet frames and time-frequency localization, Appl. Comput. Harmon. Anal., 37(2)(2014), 347-359. https://doi.org/10.1016/j.acha.2014.02.002
  21. A. Mayeli, Riesz wavelets, tiling and spectral sets in LCA groups, Complex Anal. Oper. Theory, 13(2019), 1177-1195. https://doi.org/10.1007/s11785-018-0843-0
  22. C. Monico and M. Elia, Note on an additive characterization of quadratic residues modulo p, J. Comb. Inf. Syst. Sci., 31(2006), 209-215.
  23. L. S. Pontryagin, Topological groups, Princeton Univ. Press, 1946.
  24. S. P. Raja, Bezier and B-spline curves-a study and its application in wavelet decomposition, Int. J. Wavelets Multiresolut. Inf. Process., 18(4)(2020), 2050030, 38 pp. https://doi.org/10.1142/s0219691320500307
  25. F. A. Shah, O. Ahmad and N. A. Sheikh, Orthogonal gabor systems on local fields, Filomat, 31(2017), 5193-5201. https://doi.org/10.2298/FIL1716193S
  26. F. A. Shah and L. Debnath, Tight wavelet frames on local fields, Analysis, 33(2013), 293-307.
  27. F. A. Shah and A. Wahid, Wavelet packets on locally compact abelian groups, An. St. Univ. Ovidius Constanta Ser. Mat., 18(2)(2010), 223-239.
  28. S. H. Srivastava and F. A. Shah, AB-wavelet frames in L2(Rn), Filomat, 33(2019), 3587-3597. https://doi.org/10.2298/FIL1911587S
  29. Y. Wang, Wavelets, tiling and spectral sets, Duke Math. J., 114(1)(2002), 43-57. https://doi.org/10.1215/S0012-7094-02-11413-6