DOI QR코드

DOI QR Code

석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash

  • 김헌태 (부경대학교 해양공학과) ;
  • 우희은 (부경대학교 해양공학과) ;
  • 김종오 (부경대학교 해양생명과학연구소) ;
  • 김경회 (부경대학교 해양공학과)
  • Kim, Heontae (Department of Ocean Engineering, Pukyong National University) ;
  • Woo, Hee-Eun (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jong-Oh (Institute of Marine Biotechnology, Pukyong National University) ;
  • Kim, Kyunghoi (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2021.04.30
  • 심사 : 2021.06.28
  • 발행 : 2021.06.30

초록

육상으로부터 각종 오염물질이 유입되는 하구역은 오염관리에 주의를 기울일 필요가 있다. 본 연구에서는 석탄회 조립물과 하구의 오염 퇴적물을 혼합하여 저서 환경 개선 효과 및 저서 미생물의 군집 구조 변화를 조사하였다. 하구 퇴적물과 석탄회 조립물을 7:3의 비율로 혼합하여 1개월 동안 반응시킨 후 환경 및 미생물 군집을 분석하였다. 퇴적물의 환경인자를 분석한 결과, 석탄회 조립물이 혼합된 실험구의 pH는 11까지 증가하였다. 실험구의 DIP 농도는 석탄회 조립물과의 반응을 통해 생성된 인산칼슘으로 인해 대조구 대비 30 % 감소하였다. 또한 대조구 대비 실험구에서 증가한 Gammaproteobacteria 강은 DIP 감소에 영향을 줄 수 있음을 확인하였다. DIN 농도는 대조구 대비 실험구에서 2배 이상 증가하였는데, 이는 높은 pH 및 석탄회 조립물에서 용출되는 NH4+-N의 영향인 것으로 판단된다. 질소 순환과 관련된 미생물은 대조구 및 실험구 모두에서 확인되지 않았다. 따라서, 석탄회 조립물은 오염된 하구 퇴적물의 DIP 농도 감소에 효과적이며, 저서 미생물 군집이 인의 순환에 영향을 주는 것으로 나타났다.

In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

키워드

과제정보

이 논문(또는 저서)은 부경대학교 자율창의학술연구비(2019년)에 의하여 연구되었음.

참고문헌

  1. Asaoka, S., T. Yamamoto, I. Yoshioka, and H. Tanaka(2009), Remediation of coastal marine sediments using granulated coal ash, Journal of Hazardous Materials, Vol. 172, No. 1, pp. 92-98. https://doi.org/10.1016/j.jhazmat.2009.06.140
  2. Asaoka, S., T. Yamamoto, and K. Yamamoto(2008), A preliminary study of coastal sediment amendment with granulated coal ash - nutrient elution test and experiment on Skeletonema costatum growth, Journal of Japan Society on Water Environment, Vol. 31, No. 8, pp. 455-462 (in Japanese). https://doi.org/10.2965/jswe.31.455
  3. Asaoka, S., T. Yamamoto, H. Yamamoto, H. Okamura, K. Hino, K. Nakamoto, and T. Saito(2015), Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model, Marine pollution bulletin, Vol. 94, No. 1-2, pp. 55-61. https://doi.org/10.1016/j.marpolbul.2015.03.017
  4. Asaoka, S., W. A. Jadoom, T. Ishidu, H. Okamura, T. Oikawa, and K. Nakamoto(2018), Removal of hydrogen sulfide with granulated coal ash under aerobic and anaerobic conditions, Journal of environmental chemical engineering, Vol. 6, No. 4, pp. 4665-4670. https://doi.org/10.1016/j.jece.2018.06.063
  5. Bernhard, A. E., T. Donn, A. E. Giblin, and D. A. Stahl(2005), Loss of diversity of ammonia oxidizing bacteria correlates with increasing salinity in an estuary system, Environmental Microbiology, Vol. 7, No. 9, pp. 1289-1297. https://doi.org/10.1111/j.1462-2920.2005.00808.x
  6. Cho, H. K.(2020), Verification and status of lightweight aggregate based coal ash, Korean Recycled Construction Resources Institute, Vol. 15, No. 1, pp. 33-38.
  7. Cho, H. Y., J. H. Lee, and J. H. Hyeon(2004), Bacterial Community Structure and Diversity Using 16S rDNA Analysis in the Intertidal Sediment of Ganghwa Island, Korean journal of microbiology, Vol. 40, No. 3, pp. 189-198.
  8. da Silva, M. A. C., A. Cavalett, A. Spinner, D. C. Rosa, R. B. Jasper, M. C. Quecine, M. L. Bonatelli, A. Pizzirani-Kleiner, G. Corcao, and A. O. de Souza Lima(2013), Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean, SpringerPlus, Vol. 2, No. 1, pp. 1-10. https://doi.org/10.1186/2193-1801-2-1
  9. Fang, H., Y. Chen, L. Huang, and G. He(2017), Analysis of biofilm bacterial communities under different shear stresses using size-fractionated sediment, Scientific reports, Vol. 7, No. 1, pp. 1-14. https://doi.org/10.1038/s41598-016-0028-x
  10. Hicks, N., X. Liu, R. Gregory, J. Kenny, A. Lucaci, L. Lenzi, M. P. David, and K. R. Duncan(2018), Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments, Frontiers in microbiology, Vol. 9, p. 1730. https://doi.org/10.3389/fmicb.2018.01730
  11. Jeon, W. H., S. Park, J. Y. Lee, J. S. Lee, and Y. J. Cho(2018), Evaluation of the groundwater and stream water interaction using metagenomics analysis in the hyporheic zone, Inje of Gangwon Province, Journal of the Geological Society of Korea, Vol. 54, No. 3, pp. 293-300. https://doi.org/10.14770/jgsk.2018.54.3.293
  12. Jeong, I. and K. Kim(2019), Changes in benthic environments in polluted coastal sediment using granulated coal ash as a cover, Journal of the Korean Society of Marine Environment and Safety, Vol. 25, No. 1, pp. 67-73. https://doi.org/10.7837/kosomes.2019.25.1.067
  13. Jeong, I., H. E. Woo, I. C. Lee and K. Kim(2020), Effects of Particle Size and Pyrolysis Temperature of Oyster Shell on Change of Coastal Benthic Environment, Journal of the Korean Society of Marine Environment and safety, Vol. 26, No. 7, pp. 873-880. https://doi.org/10.7837/kosomes.2020.26.7.873
  14. Kim, J., B. P. Lingaraju, R. Rheaume, J. Y. Lee, and K. F. Siddiqui(2010), Removal of ammonia from wastewater effluent by Chlorella vulgaris, Tsinghua science and technology, Vol. 15, No. 4, pp. 391-396. https://doi.org/10.1016/S1007-0214(10)70078-X
  15. Kim, K.(2018), A study on performance of granulated coal ash on remediation of benthic environment of clayey intertial zone, Master's thesis, Pukyong National University, pp. 28-47.
  16. Kim, K., I. C. Lee, S. H. Ryu, T. Saito, and T. Hibino(2014a), Application of granulated coal ash for remediation of coastal sediment, Journal of the Korean Society for Marine Environment and Energy, Vol. 17, No. 1, pp. 1-7. https://doi.org/10.7846/JKOSMEE.2014.17.1.1
  17. Kim, K., T. Hibino, T. Yamamoto, S. Hayakawa, Y. Mito, K. Nakamoto, and I. C. Lee(2014b), Field experiments on remediation of coastal sediments using granulated coal ash, Marine pollution bulletin, Vol. 83, No. 1, pp. 132-137. https://doi.org/10.1016/j.marpolbul.2014.04.008
  18. Koh, H. W., S. Rani, H. B. Hwang, and S. J. Park(2016), Microbial community structure analysis from Jeju marine sediment, Korean Journal of Microbiology, Vol. 52, No. 3, pp. 375-379. https://doi.org/10.7845/kjm.2016.6040
  19. Lee, A. H., J. Lee, J. Noh, C. Lee, S. Hong, B. O. Kwon, J. J. Kim, and J. S. Khim(2020), Characteristics of long-term changes in microbial communities from contaminated sediments along the west coast of South Korea: Ecological assessment with eDNA and physicochemical analyses, Marine Pollution Bulletin, Vol. 160, p. 111592. https://doi.org/10.1016/j.marpolbul.2020.111592
  20. Lee, D. W., H. Lee, A. H. Lee, B. O. Kwon, J. S. Khim, U. H. Yim, B. S. Kim, and J. J. Kim(2018), Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea, Environmental pollution, Vol. 234, pp. 503-512. https://doi.org/10.1016/j.envpol.2017.11.097
  21. Lee, I. C., H. E. Woo, K. Kim, J. H. Lee, and K. Kim(2018), A study on changes in pore water quality of polluted sediment due to mixing ratio of granulated coal ash, Journla of Korean Society of Coastal and Ocean Engineers, Vol. 30(5), pp. 201-206. https://doi.org/10.9765/KSCOE.2018.30.5.201
  22. Liu, J., H. Yang, M. Zhao, and X. H. Zhang(2014), Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China, Systematic and applied microbiology, Vol. 37, No. 8, pp. 578-589. https://doi.org/10.1016/j.syapm.2014.10.005
  23. Maeng, J. H., T. Y. Kim, and D. H. Seo(2014), Minimizing environmental impact in accordance with the thermal power plant ash management (I), Korea Environment Institute, Vol. 24, No. 5, pp. 472-486.
  24. Mayor, D. J., B. Thornton, and A. F. Zuur(2012), Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat, PloS one, Vol. 7, No. 6, pp. e38582. https://doi.org/10.1371/journal.pone.0038582
  25. Park, S., H. E. Woo, I. C. Lee, D. H. Kim, J. Park, J. Kim, and K. Kim(2019), Variation in the properties of contaminated coastal sediment with the mixing of alkaline industrial by-product, Journal of the Korean Society of Marine Environment and Safety, Vol. 25, No. 7, pp. 914-919. https://doi.org/10.7837/kosomes.2019.25.7.914
  26. Paerl, H. W.(2006), Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations, Ecological Engineering, Vol. 26, No. 1, pp. 40-54. https://doi.org/10.1016/j.ecoleng.2005.09.006
  27. Sonthiphand, P., S. Ruangroengkulrith, W. Mhuantong, V. Charoensawan, S. Chotpantarat, and S. Boonkaewwan(2019), Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities, Environmental Science and Pollution Research, Vol. 26, No. 26, pp. 26765-26781. https://doi.org/10.1007/s11356-019-05905-5
  28. Sebastian, M., and J. M.. Gasol(2013), Heterogeneity in the nutrient limitation of different bacterioplankton groups in the Eastern Mediterranean Sea, The ISME journal, Vol. 7, No. 8, pp. 1665-1668. https://doi.org/10.1038/ismej.2013.42
  29. Yamamoto, T., K. H. Kim, and K. Shirono(2015), A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash, Marine pollution bulletin, Vol. 90, No. 1-2, pp. 54-59. https://doi.org/10.1016/j.marpolbul.2014.11.022
  30. Yoon, B. B, E. J. Lee, T. A. Kang, and Y. S. Shin(2013), Long-term change of phytoplankton biomass (chlorophyll-a), environmental factors and freshwater Discharge in Youngsan Estuary, The Korean Society of Limnology, Vol. 46, No. 2, pp. 205-214. https://doi.org/10.11614/KSL.2013.46.2.205
  31. Wetzel, M. A., D. S. Wahrendorf, and C. Peter(2013), Sediment pollution in the Elbe estuary and its potential toxicity at different trophic levels, Science of the Total Environment, Vol. 449, pp. 199-207. https://doi.org/10.1016/j.scitotenv.2013.01.016
  32. Webster, G., J. Rinna, E. G. Roussel, J. C. Fry, A. J. Weightman, and R. J. Parkes(2010), Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS microbiology ecology, Vol. 72, No. 2, pp. 179-197. https://doi.org/10.1111/j.1574-6941.2010.00848.x
  33. Wolkersdorfer, C.(2008), Water management at abandoned looded underground mines: fundamentals, tracer tests, modelling, water treatment. Springer Science & Business Media, p. 465.
  34. Zhang, J., S. Liu, L. Li, Y. Ren, C. Feng, C. Wei, Y. Li, and Z. Huang(2017), Anaerobic dechlorination of tetrachlorobisphenol a in river sediment and associated changes in bacterial communities. Water, Air, & Soil Pollution, Vol. 228, No. 2, p. 78.