DOI QR코드

DOI QR Code

Launch Environment Test for Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE) Engineering Qualification Model

초소형위성 SNIPE(Scale Magnetospheric and Ionospheric Plasma Experiment) 시제인증모델의 발사환경시험 및 분석

  • Received : 2021.09.15
  • Accepted : 2021.10.25
  • Published : 2021.11.30

Abstract

This paper discusses the results of launch environment tests for the engineering qualification model (EQM) of nanosatellite Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE) for scientific missions and lessons learned for the design of nanosatellites. SNIPE is a group of four formation-flying 6U nanosatellites with a range of payloads for missions including space weather measurement. We developed the EQM to verify the preliminary design prior to fabricating the flight model. Launch environment test of EQM was conducted for the first time in 2019, and all failures were corrected and verified at the second test conducted in 2021. A notable point of the two tests is that the nanosatellite deployer used in the first test is different from that of the second test. The second deployer has the capability to fix the internal satellite whereas the first deployer just contains and deploys the satellite. Thus actual mechanical loads the satellite receives is reduced for the second test compared to the first test. This work compares the mechanical responses of two tests and proposes general guidelines for structural design of nanosatellites.

본문은 과학관측임무 초소형위성인 SNIPE(Scale magNetospheric and Ionospheric Plasma Experiment)의 시제인증모델(EQM)에 대한 발사환경시험 수행 결과 및 이를 통해 얻을 수 있는 신뢰성 있는 초소형위성 개발 방향에 대해 논한다. SNIPE는 우주기상관측을 포함한 다양한 탑재체를 지닌 6U급 초소형위성으로 4기가 편대비행을 하며 임무를 수행한다. 다수의 비행모델 제작 전 시제인증모델을 통해 먼저 설계 및 제작의 유용성을 검증하고자 하였다. 시제인증모델의 발사환경시험은 2019년 1차 시험이 수행되었고, 여기서 발견된 일부 문제점을 교정하여 2021년에 2차 시험을 수행함으로써 모든 문제가 해결되었음을 확인할 수 있었다. 두 차례의 시험에서 특이할 점은 1차 시험의 발사관과 2차 시험의 발사관이 다르다는 점인데, 1차 시험용 발사관과 달리 2차 시험의 발사관은 내부의 초소형위성을 고정하는 기능이 있어서 내부 초소형위성이 실제 받는 구조적 하중이 1차 시험에 비해 훨씬 경감되었다는 점이다. 본 논문은 두 시험의 결과로 나타난 특징을 분석하고, 차후 여타 초소형위성의 구조 설계에 반영할 수 있는 지침들을 제시하였다.

Keywords

Acknowledgement

본 논문은 천문연 위탁사업인 "근지구 우주환경 관측용 초소형위성 본체 개발" 사업의 지원을 받았으며, 이에 감사드립니다.

References

  1. California Polytechnic State University, San Luis Obispo, CubeSat design specification, 13th rev. (2014).
  2. California Polytechnic State University, San Luis Obispo, 6U CubeSat design specification, 1st rev. (2018).
  3. Helvajian H, Janson S, Small satellites: past, present, and future (American Institute of Aeronautics and Astronautics, Washington, DC, 2009).
  4. Erik Kulu, Nanosatellite & cubesat database (2021) [Internet], viewed 2021 Sep 21, available from: https://airtable.com/shrafcwXODMMKeRgU/tbldJoOBP5wlNOJQY
  5. Planetary Systems Corporation, Payload Specification for 3U, 6U, 12U and 27U (Planetary Systems Corporation, Silver Spring, MD, 2017).
  6. Korea Aerospace Research Institute, Nano/micro satellites information network (2021) [Internet], viewed 2021 Sep 21, available from: https://www.kari.re.kr/nanosat/launch-history/
  7. Cho DH, Choi WS, Kim MK, Kim JH, Sim E, et al., High-resolution image and video CubeSat (HiREV): development of space technology test platform using a low-cost CubeSat platform, Int. J. Aerosp. Eng. 2019, 8916416 (2019). https://doi.org/10.1155/2019/8916416
  8. Korea Astronomy and Space Science Institute, SNIPE Project (2021) [Internet], viewed 2021 Sep 21, available from: http://kswrc.kasi.re.kr/snipe/main.php?lang=ko
  9. Kim HD, Choi WS, Cho DH, Kim MK, Kim JH, et al., Introduction to development of a rendezvous/docking demonstration satellite, Proceedings of Korean Society for Aeronautical & Space Sciences 2019 Spring Conference, Buan, Korea, Apr 2019.
  10. Choi W, Kim JH, Kim H, A study on developing flight software for nano-satellite based on NASA CFS, J. Korean Soc. Aeronaut. Space Sci. 44, 997-1005 (2016). https://doi.org/10.5139/JKSAS.2016.44.11.997
  11. Cho DH, Choi W, Yoo P, Sim ES, Development method of attitude determination and control system for CubeSat by using NASA cFS SIL, Proceedings of Korean Society for Aeronautical & Space Sciences 2019 Fall Conference, Jeju, Korea, Nov 2019.
  12. Kim MK, Thermal tests of the engineering qualified model of nanosatellite SNIPE, Proceedings of Korean Society for Aeronautical & Space Sciences 2020 Spring Conference, Hongcheon, Korea, Jul 2020.
  13. Kim MK, Launch environment test of engineering qualified model of nanosatellite SNIPE, Proceedings of The Korean Society for Aeronautical & Space Sciences Spring Conference, Hongcheon, Korea, Jul 2020.
  14. Korea Astronomy and Space Science Institute, Korea Aerospace Research Institute, SNIPE Critical Design Review/Bus System (Korea Astronomy and Space Science Institute, Daejeon, Korea, 2019).
  15. Cha WH, Tahk KM, Advances in deployment mechanism of the localized 3U CubeSat deployer, Proceedings of The Korean Society for Aeronautical and Space Sciences 2019 Fall Conference, Jeju, Korea, Nov 2019.
  16. Kim M, Kim HD, Choi W, Cho DH, Kim JH, Satellite projectile having vibration reducing function and launching method using the same, Korea Patent No. 1021346200000 (2020).
  17. Kim MK, Kim HD, Choi WS, Cho DH, Kim JH, Satellite launch vehicle, Korea Patent No. 1023043770000 (2021).