Acknowledgement
본 연구내용은 국가과학기술연구회의 지원으로, 한국항공우주연구원에서 주요 사업으로 수행한 "달 착륙 핵심기술 및 행성탐사 임무연구" 결과의 일부입니다.
References
- Clarke VC Jr, Design of lunar and interplanetary ascent trajectories, AIAA J. 1, 1559-1567 (1963). https://doi.org/10.2514/3.1856
- Clarke VC Jr, Bollman WE, Roth RY, Scholey WJ, Design parameters for ballistic interplanetary trajectories, Part I. One-way transfers to Mars and Venus, JPL Technical Report No. 32-77 (1963).
- Wikipedia, Launch windows of Mars exploration missions (2021) [Internet], viewed 2021 Feb 15, available from https://en.wikipedia.org/wiki/Launch_window
- Breakwell JV, Gillespie RW, Ross S, Researches in interplanetary transfer, Am. Rocket Soc. J. 31, 201-208 (1961). https://doi.org/10.2514/8.5428
- Mickelwait AB, Tompkins EH, Park RA, Three-dimensional interplanetary trajectories, IRE Trans. Mil. Electron. MIL-3, 149-159 (1959). https://doi.org/10.1109/IRET-MIL.1959.5008166
- Topputo F, Belbruno E, Earth-Mars transfers with ballistic capture, Celest. Mech. Dyn. Astron. 121, 329-346 (2015). https://doi.org/10.1007/s10569-015-9605-8
- Lim H, 2020 preliminary feasibility study report Korean launch vehicle advancement project (2021) [Internet], viewed 2021 Feb 15, available from https://www.kistep.re.kr/reportDetail.es?mid=a10305020000&rpt_no=RES0220210170
- Song YJ, Yoo SM, Park ES, Park SY, Choi KH, et al., Korean Mars mission design using KSLV-III, J. Astron. Space Sci. 23, 355-372 (2006). https://doi.org/10.5140/JASS.2006.23.4.355
- Battin RH, Vaughan RM, An elegant Lambert algorithm, J. Guid. Control Dyn. 7, 662-670 (1984). https://doi.org/10.2514/3.19910
- Wailliez SE, On Lambert's problem and the elliptic time of flight equation: a simple semianalytical inversion method, Adv. Space Res. 53, 890-898 (2014). https://doi.org/10.1016/j.asr.2013.12.033
- Avanzini G, A simple Lambert algorithm, J. Guid. Control Dyn. 31, 1587-1594 (2008). https://doi.org/10.2514/1.36426
- Izzo D, Revisiting Lambert's problem, Celest. Mech. Dyn. Astron. 121, 1-15 (2015). https://doi.org/10.1007/s10569-014-9587-y
- Battin RH, MIT Open Courseware, Lecture Notes (2008) [Internet], viewed 2021 Nov 1, available from: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-346-astro dynamics-fall-2008/lecture-notes/Lecture17.pdf
- Widnall S, Peraire J, MIT Open Courseware, Lecture Notes (2008) [Internet], viewed 2021 Nov 2, available from: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec17.pdf
- Burke LM, Falck RD, McGuire ML, Interplanetary mission design handbook: Earth-to-Mars mission opportunities 2026 to 2045, NASA GRC, NASA/TM-2010-216764 (2010) [Internet]
- Conway BA, Spacecraft Trajectory Optimization (Cambridge University Press, Cambridge, 2010).
- Hanson JM, Beard BB, Applying Monte Carlo simulation to launch vehicle design and requirements verification, J. Spacecr. Rockets. 49, 136-144 (2012). https://doi.org/10.2514/1.52910
- Lancaster ER, Solution of Lambert's problem for short arcs, GSFC Technical Memo, NASA TM X-63656, X-643-69-370 (1969).
- Estes RH, Lancaster ER, A universal solution of Lambert's problem, GSFC Technical Memo, NASA TM X-65306, X-643-70-302 (1970).
- Mereta A, Izzo D, Target selection for a small low-thrust mission to near-Earth asteroids, Astrodynamics. 2, 249-263 (2018). https://doi.org/10.1007/s42064-018-0024-y
- Lovell JB, The effect of space launch vehicle trajectory parameters on payload capability and their relation to interplanetary mission design, Master Thesis, Virginia Polytechnic Institute (1969).
- Ceriotti M, Global optimisation of multiple gravity assist trajectories, Ph.D. Thesis, University of Glasgow (2010).
- Vasile M, De Pascale P, Preliminary design of multiple gravity-assist trajectories, J. Spacecr. Rockets. 43, 794-805 (2006). https://doi.org/10.2514/1.17413
- Izzo D, Becerra VM, Myatt DR, Nasuto SJ, Bishop JM, Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories, J. Glob. Optim. 38, 283-296 (2007). https://doi.org/10.1007/s10898-006-9106-0
- Izzo D, PyGMO and PyKEP: open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization), Proceedings of the International Conference on Astrodynamics Tools and Techniques-5th ICATT, Noordwijk, Netherlands, 29 May-1 Jun 2012.
- Izzo D, Rucinski M, Biscani F, The generalized island model, in Parallel Architectures and Bioinspired Algorithms, eds. Fernandez de Vega F, Hidalgo Perez JI, Lanchares J (Springer, Berlin, 2012), 151-169.
- Yam CH, Lorenzo DD, Izzo D, Low-thrust trajectory design as a constrained global optimization problem, Proceedings of the Institution of Mechanical Engineers, Part G, J. Aerosp. Eng. 225, 1243-1251 (2011), https://doi.org/10.1177/0954410011401686
- Miller J, Weeks C, Application of Tisserand's criterion to the design of gravity assist trajectories, in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, 5-8 Aug 2002.
- Sena F, D'Ambrosio A, Curti F, Study on interplanetary trajectories towards Uranus and Neptune, in 31st AAS/AIAA Space Flight Mechanics Meeting, Virtual, Feb 2021.
- Englander J, Ellison D, EMTGv9 Software Design Document, Flight Dynamics and Mission Design Branch, NASA GSFC [Internet], available from: https://github.com/nasa/EMTG
- Englander JA, Vavrina MA, Lim LF, McFadden LA, Rhoden AR, Noll KS, Trajectory optimization for missions to small bodies with a focus on scientific merit, Comput. Sci. Eng. 19, 18-28 (2017). https://doi.org/10.1109/MCSE.2017.3151246
- Vasile M, Bernelli-Zazzera F, Optimizing low-thrust and gravity assist maneuvers to design interplanetary trajectories, J. Astronaut. Sci. 51, 13-35 (2003). https://doi.org/10.1007/BF03546313
- Vasile M, A systematic-heuristic approach for space trajectory design, Ann. N. Y. Acad. Sci. 1017, 234-254 (2004). https://doi.org/10.1196/annals.1311.014
- Gill PE, Murray W, Saunders MA, SNOPT: an SQP algorithm for large-scale constrained optimization, Soc. Ind. Appl. Math. 47, 99-131 (2005). https://doi.org/10.1137/S0036144504446096
- Korea Astronomy and Space Science Institut, Asteroid Apophis observed with OWL-Net of Korea Astronomy and Space Science Institute (2021) [Internet], viewed 2021 Feb 15, available from: https://www.kasi.re.kr/kor/publication/post/newsMaterial/28706