DOI QR코드

DOI QR Code

A Study on the Method of Calculating the Launch Period of the Asteroid Exploration Mission

소행성 탐사선의 발사시기 산출 방안에 관한 연구

  • Received : 2021.10.12
  • Accepted : 2021.10.29
  • Published : 2021.11.30

Abstract

A basic study was conducted on how to determine the launch timing of a space probe targeting an Earth-approaching asteroid. In the future, when a probe mission targeting an asteroid approaching Earth's orbit is conducted in Korea, in order to determine the launch time, an appropriate solution should be obtained by applying the Global Optimization technique. For this, accurate current orbit information of each asteroid must be obtained first, and prior scenarios such as Earth's orbit information, main engine performance information of the probe and launch vehicle, the number of gravity-assisted maneuvers, and maximum flight time limit should be discussed. Also, the criteria for optimization should be determined first. In this paper, based on these prerequisites and information, a method for finding the launch time of an asteroid probe was studied using the open source software such as PyKEP and Evolutionary Mission Trajectory Generator (EMTG) which are the programs for interplanetary trajectory generation purpose.

지구접근 소행성을 목적지로 하는 우주탐사선의 발사 시기를 결정하는 방법에 대하여 기본적인 연구를 수행하였다. 향후, 지구 궤도에 접근하는 소행성을 대상으로 하는 탐사선 임무가 국내에서 진행될 경우에 발사시기를 결정하기 위해서는 전역최적화(global optimization)기법을 적용하여 적절한 해를 구하여야 한다. 이를 위해서는 먼저 각 소행성들의 정확한 궤도 정보가 필요하고. 지구의 공전궤도 정보, 탐사선의 주엔진 성능 정보, 중력보조 기동의 횟수, 최대 비행시간 제한 등의 사전 시나리오가 논의되어야 한다. 또한 최적화의 기준이 우선 결정되어야 한다. 본 논고에서는 이러한 전제 조건과 정보를 바탕으로 PyKEP, EMTG(Evolutionary Mission Trajectory Generator) 등의 오픈소스 경로탐색 프로그램을 사용하여 소행성 탐사선의 발사 시기를 찾는 방안을 연구하였다.

Keywords

Acknowledgement

본 연구내용은 국가과학기술연구회의 지원으로, 한국항공우주연구원에서 주요 사업으로 수행한 "달 착륙 핵심기술 및 행성탐사 임무연구" 결과의 일부입니다.

References

  1. Clarke VC Jr, Design of lunar and interplanetary ascent trajectories, AIAA J. 1, 1559-1567 (1963). https://doi.org/10.2514/3.1856
  2. Clarke VC Jr, Bollman WE, Roth RY, Scholey WJ, Design parameters for ballistic interplanetary trajectories, Part I. One-way transfers to Mars and Venus, JPL Technical Report No. 32-77 (1963).
  3. Wikipedia, Launch windows of Mars exploration missions (2021) [Internet], viewed 2021 Feb 15, available from https://en.wikipedia.org/wiki/Launch_window
  4. Breakwell JV, Gillespie RW, Ross S, Researches in interplanetary transfer, Am. Rocket Soc. J. 31, 201-208 (1961). https://doi.org/10.2514/8.5428
  5. Mickelwait AB, Tompkins EH, Park RA, Three-dimensional interplanetary trajectories, IRE Trans. Mil. Electron. MIL-3, 149-159 (1959). https://doi.org/10.1109/IRET-MIL.1959.5008166
  6. Topputo F, Belbruno E, Earth-Mars transfers with ballistic capture, Celest. Mech. Dyn. Astron. 121, 329-346 (2015). https://doi.org/10.1007/s10569-015-9605-8
  7. Lim H, 2020 preliminary feasibility study report Korean launch vehicle advancement project (2021) [Internet], viewed 2021 Feb 15, available from https://www.kistep.re.kr/reportDetail.es?mid=a10305020000&rpt_no=RES0220210170
  8. Song YJ, Yoo SM, Park ES, Park SY, Choi KH, et al., Korean Mars mission design using KSLV-III, J. Astron. Space Sci. 23, 355-372 (2006). https://doi.org/10.5140/JASS.2006.23.4.355
  9. Battin RH, Vaughan RM, An elegant Lambert algorithm, J. Guid. Control Dyn. 7, 662-670 (1984). https://doi.org/10.2514/3.19910
  10. Wailliez SE, On Lambert's problem and the elliptic time of flight equation: a simple semianalytical inversion method, Adv. Space Res. 53, 890-898 (2014). https://doi.org/10.1016/j.asr.2013.12.033
  11. Avanzini G, A simple Lambert algorithm, J. Guid. Control Dyn. 31, 1587-1594 (2008). https://doi.org/10.2514/1.36426
  12. Izzo D, Revisiting Lambert's problem, Celest. Mech. Dyn. Astron. 121, 1-15 (2015). https://doi.org/10.1007/s10569-014-9587-y
  13. Battin RH, MIT Open Courseware, Lecture Notes (2008) [Internet], viewed 2021 Nov 1, available from: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-346-astro dynamics-fall-2008/lecture-notes/Lecture17.pdf
  14. Widnall S, Peraire J, MIT Open Courseware, Lecture Notes (2008) [Internet], viewed 2021 Nov 2, available from: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec17.pdf
  15. Burke LM, Falck RD, McGuire ML, Interplanetary mission design handbook: Earth-to-Mars mission opportunities 2026 to 2045, NASA GRC, NASA/TM-2010-216764 (2010) [Internet]
  16. Conway BA, Spacecraft Trajectory Optimization (Cambridge University Press, Cambridge, 2010).
  17. Hanson JM, Beard BB, Applying Monte Carlo simulation to launch vehicle design and requirements verification, J. Spacecr. Rockets. 49, 136-144 (2012). https://doi.org/10.2514/1.52910
  18. Lancaster ER, Solution of Lambert's problem for short arcs, GSFC Technical Memo, NASA TM X-63656, X-643-69-370 (1969).
  19. Estes RH, Lancaster ER, A universal solution of Lambert's problem, GSFC Technical Memo, NASA TM X-65306, X-643-70-302 (1970).
  20. Mereta A, Izzo D, Target selection for a small low-thrust mission to near-Earth asteroids, Astrodynamics. 2, 249-263 (2018). https://doi.org/10.1007/s42064-018-0024-y
  21. Lovell JB, The effect of space launch vehicle trajectory parameters on payload capability and their relation to interplanetary mission design, Master Thesis, Virginia Polytechnic Institute (1969).
  22. Ceriotti M, Global optimisation of multiple gravity assist trajectories, Ph.D. Thesis, University of Glasgow (2010).
  23. Vasile M, De Pascale P, Preliminary design of multiple gravity-assist trajectories, J. Spacecr. Rockets. 43, 794-805 (2006). https://doi.org/10.2514/1.17413
  24. Izzo D, Becerra VM, Myatt DR, Nasuto SJ, Bishop JM, Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories, J. Glob. Optim. 38, 283-296 (2007). https://doi.org/10.1007/s10898-006-9106-0
  25. Izzo D, PyGMO and PyKEP: open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization), Proceedings of the International Conference on Astrodynamics Tools and Techniques-5th ICATT, Noordwijk, Netherlands, 29 May-1 Jun 2012.
  26. Izzo D, Rucinski M, Biscani F, The generalized island model, in Parallel Architectures and Bioinspired Algorithms, eds. Fernandez de Vega F, Hidalgo Perez JI, Lanchares J (Springer, Berlin, 2012), 151-169.
  27. Yam CH, Lorenzo DD, Izzo D, Low-thrust trajectory design as a constrained global optimization problem, Proceedings of the Institution of Mechanical Engineers, Part G, J. Aerosp. Eng. 225, 1243-1251 (2011), https://doi.org/10.1177/0954410011401686
  28. Miller J, Weeks C, Application of Tisserand's criterion to the design of gravity assist trajectories, in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, 5-8 Aug 2002.
  29. Sena F, D'Ambrosio A, Curti F, Study on interplanetary trajectories towards Uranus and Neptune, in 31st AAS/AIAA Space Flight Mechanics Meeting, Virtual, Feb 2021.
  30. Englander J, Ellison D, EMTGv9 Software Design Document, Flight Dynamics and Mission Design Branch, NASA GSFC [Internet], available from: https://github.com/nasa/EMTG
  31. Englander JA, Vavrina MA, Lim LF, McFadden LA, Rhoden AR, Noll KS, Trajectory optimization for missions to small bodies with a focus on scientific merit, Comput. Sci. Eng. 19, 18-28 (2017). https://doi.org/10.1109/MCSE.2017.3151246
  32. Vasile M, Bernelli-Zazzera F, Optimizing low-thrust and gravity assist maneuvers to design interplanetary trajectories, J. Astronaut. Sci. 51, 13-35 (2003). https://doi.org/10.1007/BF03546313
  33. Vasile M, A systematic-heuristic approach for space trajectory design, Ann. N. Y. Acad. Sci. 1017, 234-254 (2004). https://doi.org/10.1196/annals.1311.014
  34. Gill PE, Murray W, Saunders MA, SNOPT: an SQP algorithm for large-scale constrained optimization, Soc. Ind. Appl. Math. 47, 99-131 (2005). https://doi.org/10.1137/S0036144504446096
  35. Korea Astronomy and Space Science Institut, Asteroid Apophis observed with OWL-Net of Korea Astronomy and Space Science Institute (2021) [Internet], viewed 2021 Feb 15, available from: https://www.kasi.re.kr/kor/publication/post/newsMaterial/28706