DOI QR코드

DOI QR Code

A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation

  • Najafi, Mahsa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan) ;
  • Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
  • Received : 2020.01.18
  • Accepted : 2021.05.20
  • Published : 2021.07.10

Abstract

In this study, a nonlocal Layerwise theory is presented for free vibration analysis of nanobeams resting on an elastic foundation. Eringen's nonlocal elasticity theory is used to consider the small-scale effect on behavior of nanobeam. The governing equations are obtained by employing Hamilton's principle and Layerwise theory of beams and Eringen's nonlocal constitutive equation. The presented theory takes into account the in-plane and transverse normal and shear strain in the modeling of the nanobeam and can predict more accurate results. The governing equations of the beam are solved by Navier's method for Simple-Simple boundary conditions and semi-analytical methods to obtain the natural frequency for various boundary conditions including Clamped-Simple (C-S), Clamped-Clamped (C-C) and Free-Free (F-F) boundary conditions. Predictions of the present theory are compared with benchmark results in the literature. Effects of nonlocal parameter, Pasternak shear coefficient, Winkler spring coefficient, boundary conditions, and the aspect ratio on the free vibration of nanobeams are studied. The flexural mode and thickness mode natural frequencies of the nanobeam are predicted. It is shown that the predictions of present method are more accurate than the equivalent single layer theories. The theoretical developments and formulation presented herein should also be served to analyze the mechanical behavior of various nanostructures with various loading and boundary conditions.

Keywords

References

  1. Afshin, M. and Taheri-Behrooz, F. (2015), "Interlaminar stresses of laminated composite beams resting on elastic foundation subjected to transverse loading", Comput. Mater. Sci., 96, 439-447. https://doi.org/10.1016/j.commatsci.2014.06.027.
  2. Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel Compos. Struct., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193.
  3. Ahmadi, I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733.
  4. Ahmadi, I. (2018), "Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates", Struct. Eng. Mech., 65(3), 275-290. https://doi.org/10.12989/sem.2018.65.3.275.
  5. Ahmadi, I. (2019), "Free edge stress prediction in thick laminated cylindrical shell panel subjected to bending moment", Appl. Math. Model., 65, 507-525. https://doi.org/10.1016/j.apm.2018.08.029.
  6. Ahmadi, I. (2018), "Three-dimensional stress analysis in torsion of laminated composite bar with general layer stacking", Eur. J. Mech.-A/Solids, 72, 252-267. https://doi.org/10.1016/j.euromechsol.2018.05.003.
  7. Aimmanee, S. and Batra, R.C. (2007), "Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions", J. Sound Vib., 302(3), 613-620. https://doi.org/10.1016/j.jsv.2006.11.029.
  8. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888.
  9. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  10. Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009.
  11. Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
  12. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  13. Asrari, R., Ebrahimi, F., Kheirikhah, M.M. and Safari, K.H. (2020), "Buckling analysis of heterogeneous magneto-electrothermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1728545.
  14. Anjomshoa, A. and Tahani, M. (2016), "Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method", J. Mech. Sci. Technol., 30(6), 2463-2474. https://doi.org/10.1007/s12206-016-0506-x
  15. Ansari, R., Pourashraf, T., Gholami, R., Sahmani, S. and Ashrafi, M.A. (2015), "Size-dependent resonant frequency and flexural sensitivity of atomic force microscope microcantilevers based on the modified strain gradient theory", Int. J. Optomechatron., 9(2), 111-130. https://doi.org/10.1080/15599612.2015.1034900.
  16. Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013.
  17. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  18. Arani, A.G., Fereidoon, A. and Kolahchi, R. (2015), "Nonlinear surface and nonlocal piezoelasticity theories for vibration of embedded single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods", J. Intel. Mater. Syst. Struct., 26(10), 1150-1163. https://doi.org/10.1177%2F1045389X14538331. https://doi.org/10.1177%2F1045389X14538331
  19. Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6.
  20. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579.
  21. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  22. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimensional Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
  23. Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotubebased mass sensors using axial vibration and nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006.
  24. Basar, Y., and Ding, Y. (1995), "Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains", Composites Engineering, 5(5), 485-499. https://doi.org/10.1016/0961-9526(95)00020-N
  25. Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. with Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010.
  26. Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065.
  27. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.
  28. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A., (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  29. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. http://dx.doi.org/10.12989/anr.2019.7.3.191.
  30. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.
  31. Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pressure Vess. Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  32. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Method. Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961.
  33. Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  34. Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model; technical note", Asian J. Civil Eng. (Building and Housing), 12(5), 651-661.
  35. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
  36. Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
  37. Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
  38. de Sciarra, F.M. (2014), "Finite element modelling of nonlocal beams", Physica E: Low-Dimensional Syst. Nanostruct., 59, 144-149. https://doi.org/10.1016/j.physe.2014.01.005.
  39. Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermomechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. https://doi.org/10.1080/15376494.2017.1285458.
  40. Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.
  41. El-Sayed, T.A. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring subsystems", Struct. Eng. Mech., 57(6), 989-1014. http://dx.doi.org/10.12989/sem.2016.57.6.989.
  42. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  43. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
  44. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
  45. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  46. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  47. Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.
  48. Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184, 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066.
  49. Gao, Y., Xiao, W.S. and Zhu, H., (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), pp.469-488. https://doi.org/10.12989/scs.2019.31.5.469.
  50. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
  51. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  52. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
  53. Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimensional Syst. Nanostruct., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.
  54. Kachapi, S.H.H., Dardel, M., Daniali, H.M. and Fathi, A. (2019), "Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5264-5279. https://doi.org/10.1177%2F0954406219845019. https://doi.org/10.1177%2F0954406219845019
  55. Khalid, H.M., Yasin, M.Y., and Khan, A.H. (2018), "Free Vibration Analysis of Multilayered Arches using a Layerwise Theory", Proceedings of the IOP Conference Series: Materials Science and Engineering, 377(1), 012168. https://doi.org/10.1088/1757-899X/377/1/012168.
  56. Khaniki, H.B. (2018), "Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model", Physica E: Low-dimensional Syst. Nanostruct., 99, 310-319. https://doi.org/10.1016/j.physe.2018.02.008.
  57. Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
  58. Kordkheili, S.H. and Soltani, Z. (2018), "A layerwise finite element for geometrically nonlinear analysis of composite shells", Compos. Struct., 186, 355-364. https://doi.org/10.1016/j.compstruct.2017.12.022.
  59. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  60. Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130.
  61. Lim, C.W., Islam, M.Z. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Mech. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002.
  62. Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
  63. Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046.
  64. Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solid. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.
  65. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.
  66. Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dimension, 3(1), 1-17. https://doi.org/10.7508/IJND.2012.01.001.
  67. Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.
  68. Nosier, A., Kapania, R.K. and Reddy, J.N. (1993), "Free vibration analysis of laminated plates using a layerwise theory", AIAA J., 31(12), 2335-2346. https://doi.org/10.2514/3.11933.
  69. Nosier, A. and Miri, A.K. (2010), "Boundary-layer hygrothermal stresses in laminated, composite, circular, cylindrical shell panels", Arch. Appl. Mech., 80(4), 413-440. https://doi.org/10.1007/s00419-009-0323-0.
  70. Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
  71. Numanoglu, H.M. and Civalek, O. (2019), "On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM", Int. J. Mech. Sci., 161, 105076. https://doi.org/10.1016/j.ijmecsci.2019.105076.
  72. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015.
  73. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
  74. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.
  75. Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002.
  76. Pourkermani, A.G., Azizi, B. and Pishkenari, H.N. (2020), "Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model", Int. J. Mech. Sci., 165, 105208. https://doi.org/10.1016/j.ijmecsci.2019.105208.
  77. Ragb, O., Mohamed, M. and Matbuly, M.S. (2019), "Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods", Heliyon, 5(6), e01856. https://doi.org/10.1016/j.heliyon.2019.e01856.
  78. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
  79. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  80. Rakocevic, M., and Popovic, S. (2018), "Bending analysis of simply supported rectangular laminated composite plates using a new computation method based on analytical solution of layerwise theory", Archive of Applied Mechanics, 88(5), 671-689. https://doi.org/10.1007/s00419-017-1334-x
  81. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  82. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  83. Reddy, J.N. (1989), "On the generalization of displacement-based laminate theories", Appl. Mech. Rev., 42(11), S213-S222. https://doi.org/10.1115/1.3152393.
  84. Ren, S. and Zhao, G. (2019), "High-Order Layerwise Formulation of Transverse Shear Stress Field for Laminated Composite Beams", AIAA J., 57(5), 2171-2184. https://doi.org/10.2514/1.J057412.
  85. Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010.
  86. Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499. https://doi.org/10.1016/j.ijmecsci.2017.07.013.
  87. Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015), "On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects", Compos. Struct., 121, 377-385. https://doi.org/10.1016/j.compstruct.2014.11.033.
  88. Salehipour, H. and Shahsavar, A. (2018), "A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory", Compos. Struct., 206, 415-424. https://doi.org/10.1016/j.compstruct.2018.08.033.
  89. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  90. Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling", Int. J. Mech. Sci., 69, 85-93. https://doi.org/10.1016/j.ijmecsci.2013.01.030.
  91. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  92. Srinivas, S., Rao, C.J. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.
  93. Tahani, M. (2007), "Analysis of laminated composite beams using layerwise displacement theories", Compos. Struct., 79(4), 535-547. https://doi.org/10.1016/j.compstruct.2006.02.019.
  94. Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.
  95. Thai, C.H., Ferreira, A.J.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis", Acta Mechanica, 227(5), 1225-1250. https://doi.org/10.1007/s00707-015-1547-4.
  96. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  97. Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., 12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541.
  98. Toupin, R.A. (1964), "Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/BF00253050.
  99. Trabelssi, M., El-Borgi, S., Fernandes, R. and Ke, L.L. (2019), "Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation", Compos. Part B: Eng., 157, 331-349. https://doi.org/10.1016/j.compositesb.2018.08.132.
  100. Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001.
  101. Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).
  102. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401.
  103. Wang, G.F., Feng, X.Q. and Yu, S.W. (2007), "Surface buckling of a bending microbeam due to surface elasticity", EPL (Europhysics Letters), 77(4), 44002. https://doi.org/10.1209/0295-5075/77/44002.
  104. Wang, J., Shen, H., Zhang, B., Liu, J. and Zhang, Y. (2018), "Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 101, 85-93. https://doi.org/10.1016/j.physe.2018.03.017.
  105. Wang, L. (2010), "Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49(4), 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.
  106. Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct., 43(1), 57-73. https://doi.org/10.1080/15397734.2014.928221.
  107. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  108. Zhang, C. and Chang, R. (2019), "Improved Layerwise theory method application to stress analysis for composite tube in pure bending", Proceedings of the IOP Conference Series: Materials Science and Engineering, 474(1), 012055. https://doi.org/10.1088/1757-899X/474/1/012055.
  109. Zhang, G.Y. and Gao, X.L. (2019), "A non-classical Kirchhoff rod model based on the modified couple stress theory", Acta Mechanica, 230(1), 243-264. https://doi.org/10.1007/s00707-018-2279-z.