DOI QR코드

DOI QR Code

Recent Advances in Covalent Triazine Framework based Separation Membranes

공유결합 트리아진 구조체 기반 분리막의 최근 발전

  • Kim, Esther (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 김에스더 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.05.26
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

As a branch of covalent organic frameworks (COF), covalent triazine frameworks (CTF) are inherently porous structures composed of networks of repeating hexagonal triazine rings fabricated via the ionothermal trimerization reaction. They also contain plenty of nitrogen functional groups that increase affinity for some chemicals while rejecting others. Because of their tunable properties, many researchers have synthesized and tested CTFs for gas and liquid separation processes. Various studies of novel CTFs, mixed CTF composites, and CTF membranes have experimented for gas adsorption/separation (e.g., CO2, C2H2, H2, etc.) and desalination. Some CTF studies have determined the limits and potentials through advanced computer simulations while subsequent experiments have tested CTFs for photocatalytic properties, suggesting recyclability for greater sustainability. In this review, the covalent triazine framework-based separation membrane is discussed.

공유결합 유기 구조체(COF)의 한 가지로서, 공유결합 트리아진 구조체(CTF)는 이온 열 삼량 체화 반응을 통해 제조된 반복되는 육각형 트리아진 고리의 네트워크로 구성되어 본질적으로 다공성 구조를 가진다. 또한 일부 화학 물질에 대한 친화성을 높이고 다른 화학 물질을 배제하는 많은 질소 작용기를 포함한다. 조절 가능한 특성 때문에 많은 연구자들이 기체 및 액체 분리 공정을 위한 CTF의 소재를 합성하고 테스트했다. 새로운 CTF, 혼합 CTF 복합재 및 CTF 멤브레인에 대한 다양한 연구가 기체흡착, 기체분리(예 : CO2, C2H2, H2 등) 및 담수화에 대해 연구되었다. 일부 CTF 연구는 고급 컴퓨터 시뮬레이션을 통해 한계와 잠재력을 결정했으며 후속 실험에서는 광촉매 특성에 대한 CTF를 테스트하여 더 큰 지속 가능성을 위한 재활용 가능성을 제안했다. 이 총설에서는 공유결합 트리아진 구조체 기반 분리막에 대해 설명할 예정이다.

Keywords

References

  1. M.A. Solomos, F.J. Claire, T.J. Kempa, "2D molecular crystal lattices: Advances in their synthesis, characterization, and application", J. Mater. Chem. A, 7, 23537 (2019). https://doi.org/10.1039/C9TA06534B
  2. J. Wang, S. Zhuang, "Covalent organic frameworks (COFs) for environmental applications", Coord. Chem. Rev., 400, 213046 (2019). https://doi.org/10.1016/j.ccr.2019.213046
  3. Z. Xia, Y. Zhao, S.B. Darling, "Covalent Organic Frameworks for Water Treatment", Adv. Mater. Interfaces, 8, 2001507 (2021). https://doi.org/10.1002/admi.202001507
  4. J. Artz, "Covalent Triazine-based Frameworks - Tailor-made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species", ChemCatChem, 10, 1753 (2018). https://doi.org/10.1002/cctc.201701820
  5. B. Zheng, X. Lin, X. Zhang, D. Wu, K. Matyjaszewski, "Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage", Adv. Funct. Mater., 30, 1907006 (2020). https://doi.org/10.1002/adfm.201907006
  6. A. Bhunia, I. Boldog, A. Moller, C. Janiak, "Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation", J. Mater. Chem. A, 1, 14990 (2013). https://doi.org/10.1039/c3ta13407e
  7. J. Zhu, S. Yuan, J. Wang, Y. Zhang, M. Tian, B. Van der Bruggen, "Microporous organic polymer-based membranes for ultrafast molecular separations", Prog. Polym. Sci., 110, 101308 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101308
  8. S. Dey, A. Bhunia, I. Boldog, C. Janiak, "A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation", Microporous Mesoporous Mater., 241, 303 (2017). https://doi.org/10.1016/j.micromeso.2016.11.033
  9. A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, "Outlook for graphene-based desalination membranes", npj Clean Water, 1, 5 (2018). https://doi.org/10.1038/s41545-018-0004-z
  10. K. Yuan, C. Liu, J. Han, G. Yu, J. Wang, H. Duan, Z. Wang, X. Jian, "Phthalazinone structurebased covalent triazine frameworks and their gas adsorption and separation properties", RSC Adv., 6, 12009 (2016). https://doi.org/10.1039/C5RA23148E
  11. J. Safaei, P. Xiong, G. Wang, "Progress and prospects of two-dimensional materials for membranebased water desalination", Mater. Today Adv., 8, 100108 (2020). https://doi.org/10.1016/j.mtadv.2020.100108
  12. J. Kim, M.R. Othman, "Research Trend on ZIF-8 Membranes for Propylene Separation", Membr. J., 29, 67 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.2.67
  13. J. H. Jo, W. S. Chi, "Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations", Membr. J., 30, 385 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.385
  14. D. Kim, "Review on Zeolite MFI Membranes for Xylene Isomer Separation", Membr. J., 29, 202 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.202
  15. C. Yin, Z. Zhang, J. Zhou, Y. Wang, "Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes", ACS Appl. Mater. Interfaces, 12, 18944 (2020). https://doi.org/10.1021/acsami.0c03246
  16. Z. Yang, W. Guo, S.M. Mahurin, S. Wang, H. Chen, L. Cheng, K. Jie, H.M. Meyer III, D.E. Jiang, G. Liu, W. Jin, I. Popovs, S. Dai, "Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes", Chem, 6, 631 (2020). https://doi.org/10.1016/j.chempr.2019.12.006
  17. G.R. Xu, J.M. Xu, H.C. Su, X.Y. Liu, L. Lu, H.L. Zhao, H.J. Feng, R. Das, "Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions", Desalination, 451, 18 (2019). https://doi.org/10.1016/j.desal.2017.09.024
  18. C. Zhang, B.H. Wu, M.Q. Ma, Z. Wang, Z.K. Xu, "Ultrathin metal/covalent-organic framework membranes towards ultimate separation", Chem. Soc. Rev., 48, 3811 (2019). https://doi.org/10.1039/C9CS00322C
  19. S. Dey, A. Bhunia, H. Breitzke, P.B. Groszewicz, G. Buntkowsky, C. Janiak, "Two linkers are better than one: enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers", J. Mater. Chem. A, 5, 3609 (2017). https://doi.org/10.1039/C6TA07076K
  20. S. Dey, S. Bugel, S. Sorribas, A. Nuhnen, A. Bhunia, J. Coronas, C. Janiak, "Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies", Front. Chem., 7, 693 (2019). https://doi.org/10.3389/fchem.2019.00693
  21. J. Du, Y. Cui, Y. Liu, R. Krishna, Y. Yu, S. Wang, C. Zhang, X. Song, Z. Liang, "Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation", Microporous Mesoporous Mater., 276, 213 (2019). https://doi.org/10.1016/j.micromeso.2018.10.001
  22. H. Jiang, J. Zhang, T. Huang, J. Xue, Y. Ren, Z. Guo, H. Wang, L. Yang, Y. Yin, Z. Jiang, M.D. Guiver, "Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO2 Separations", Ind. Eng. Chem. Res., 59, 5296 (2020). https://doi.org/10.1021/acs.iecr.9b04632
  23. C. Krishnaraj, H.S. Jena, K. Leus, H.M. Freeman, L.G. Benning, P. Van Der Voort, "An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation", J. Mater. Chem. A, 7, 13188 (2019). https://doi.org/10.1039/C8TA11722E
  24. Y. Lu, J. He, Y. Chen, H. Wang, Y. Zhao, Y. Han, Y. Ding, "Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework", Macromol. Rapid Commun., 39, 1700468 (2018). https://doi.org/10.1002/marc.201700468
  25. R.L. Thankamony, X. Li, S.K. Das, M.M. Ostwal, Z. Lai, "Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations", J. Membr. Sci., 591, 117348 (2019). https://doi.org/10.1016/j.memsci.2019.117348
  26. Y. Wang, J. Li, Q. Yang, C. Zhong, "Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification", ACS Appl. Mater. Interfaces, 8, 8694 (2016). https://doi.org/10.1021/acsami.6b00657
  27. Y. Ying, D. Liu, J. Ma, M. Tong, W. Zhang, H. Huang, Q. Yang, C. Zhong, "A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation", J. Mater. Chem. A, 4, 13444 (2016). https://doi.org/10.1039/C6TA04579K
  28. X. Zhu, C. Tian, S.M. Mahurin, S.H. Chai, C. Wang, S. Brown, G.M. Veith, H. Luo, H. Liu, S. Dai, "A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation", J. ACS, 134, 10478 (2012).
  29. L.-C. Lin, J. Choi, J.C. Grossman, "Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination", Chem. Commun., 51, 14921 (2015). https://doi.org/10.1039/C5CC05969K
  30. H. Wang, H. Wang, H. Jiang, A. Sheng, Z. Wei, Y. Li, C. Wu, H. Li, "Positively Charged Polysulfonamide Nanocomposite Membranes Incorporating Hydrophilic Triazine-Structured COFs for Highly Efficient Nanofiltration", ACS Appl. Nano Mater., 3, 9329 (2020). https://doi.org/10.1021/acsanm.0c01961
  31. S. Cao, Y. Zhang, N. He, J. Wang, H. Chen, F. Jiang, "Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants", J. Hazard. Mater., 391, 122204 (2020). https://doi.org/10.1016/j.jhazmat.2020.122204
  32. G. Li, W. Wang, Q. Fang, F. Liu, "Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation", J. Membr. Sci., 595, 117525 (2020). https://doi.org/10.1016/j.memsci.2019.117525
  33. G. Li, J. Ye, Y. Shen, Q. Fang, F. Liu, "Covalent triazine frameworks composite membrane (CdS/CTF-1) with enhanced photocatalytic in-situ cleaning and disinfection properties for sustainable separation", Chem. Eng. J., 424, 127784 (2020).
  34. T. Wang, H. Wu, S. Zhao, W. Zhang, M. Tahir, Z. Wang, J. Wang, "Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation", Chem. Eng. J., 384, 123347 (2020). https://doi.org/10.1016/j.cej.2019.123347
  35. A. Yousaf, A.M. Arif, N. Xu, J. Zhou, C.Y. Sun, X.L. Wang, Z.M. Su, "A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln3+ ion encapsulation", J. Mater. Chem. C, 7, 8860 (2019).