DOI QR코드

DOI QR Code

소나무와 굴참나무 임분의 가지 분해율과 탄소 및 질소 동태 비교

Comparisons of Decomposition Rates, Carbon and Nitrogen Dynamics of Branches in Pinus densiflora and Quercus variabilis Stands

  • 최병길 (경상국립대학교 산림자원학과) ;
  • 백경원 (경상국립대학교 산림자원학과) ;
  • 김형섭 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과) ;
  • 김춘식 (경상국립대학교 산림자원학과)
  • Choi, Byeonggil (Department of Forest Resources, Gyeongsang National University) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongsang National University) ;
  • Kim, Hyungsub (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongsang National University)
  • 투고 : 2020.07.15
  • 심사 : 2021.05.26
  • 발행 : 2021.06.30

초록

본 연구는 경상남도 산청과 진주 지역으로부터 서로 인접하여 생육하고 있는 소나무와 굴참나무를 대상으로 기질의 특성, 임분 종류, 토양 및 기상 환경요인 등이 가지의 분해율과 탄소 및 질소 동태에 어떠한 영향을 끼치는지 알아보기 위해 수행하였다. 직경 2.0~4.0cm, 길이 10cm의 가지 시료를 30cm × 30cm 크기의 매쉬 백에 넣은 후 2018년 5월 각 임분의 임상에 매설하였으며 2018년 8월과, 11월, 그리고 2019년 2월과, 5월에 각 조사구에서 회수하여 가지의 분해율과 탄소 및 질소 동태를 조사하였다. 매설 12개월 후 가지 분해율은 산청-소나무(4.49 %) < 진주-소나무(5.75 %) < 산청-굴참나무(20.01 %) < 진주-굴참나무(24.68 %) 순서로 나타나 두 지역 모두 굴참나무 가지가 소나무에 비해 빠른 분해를 보였다. 탄소 및 질소의 경우 굴참나무는 순 무기화를 나타냈으며, 소나무는 탄소 및 질소의 축적 및 저장이 나타나 수종 간 다른 경향을 보였다. 본 연구 결과에 따르면 서로 인접하여 생육하고 있는 두 수종의 분해율과 탄소 및 질소 동태는 지역·환경적 요인보다 수종 간 초기 질소 농도, C/N율과 같은 기질의 특성이 더 큰 영향을 미치는 것으로 나타났다.

This study was carried out to understand how factors of decomposition such as quality of the substrate (tree species), forest types, and soil·meteorological conditions affect decomposition rates and dynamics of carbon (C) and nitrogen (N) of branches in adjacent Pinus densiflora and Quercus variabilis stands in Sancheong and J inju in Southern Korea. The branch bags (30 cm × 30 cm) with branch samples (a diameter of 2.0 - 4.0 cm and length of 10 cm) were placed on the forest floor at each stand in May 2018. The branch bags were collected in August and November 2018, February and May 2019, respectively. The decomposition rates of branches in P. densiflora stands were 4.49 % for Sancheong, and 5.75 % for Jinju. Whereas, the decomposition rates in Q. variabilis were 20.01 % for Sancheong, and 24.68 % for Jinju, respectively. The decomposition of branches was more rapid in Q. variabilis compared with P. densiflora in both regions. C and N in decomposed branches were more mineralized in Q. variabilis, whereas C and N were more accumulated in P. densiflora. These results indicated that the decomposition rates, C and N of decomposed branches may be affected by differences in substrate quality such as initial N concentration and C/N ratio rather than differences between both regions including different environmental factors.

키워드

과제정보

본 연구는 한국 임업진흥원의 "신기후체제 대응 산림분야 국가 온실가스 인벤토리 산정체계 및 탄소계정 고도화 연구(R1707942)"와 "국토교통부/국토교통과학기술진흥원(과제번호: 20UMRG-B158194-01)"의 지원에 의해 수행되었습니다.

참고문헌

  1. Aerts, R., 1997: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3), 439-449. https://doi.org/10.2307/3546886
  2. Alban, D. H., and J. Pastor, 1993: Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Canadian Journal of Forest Research 23(9), 1744-1749. https://doi.org/10.1139/x93-220
  3. Bargali, S. S., 1996: Weight loss and N release in decomposing wood litter in eucalypt plantation age series. Soil Biology and Biochemistry 28, 669-702. https://doi.org/10.1016/0038-0717(95)00143-3
  4. Berg, B., M. B. Johansson, and V. Meentemeyer, 2000: Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Canadian Journal of Forest Research 30(7), 1136-1147. https://doi.org/10.1139/cjfr-30-7-1136
  5. Bray, J. R., and E. Gorham, 1964: Litter production in forests of the world. Advances in Ecological Research 2, 101-157. https://doi.org/10.1016/S0065-2504(08)60331-1
  6. Butler, R., L. Patty, R. C. Le Bayon, C. Guenat, and R. Schlaepfer, 2007: Log decay of Picea abies in the Swiss Jura mountains of central Europe. Forest Ecology and Management 242(2-3), 791-799. https://doi.org/10.1016/j.foreco.2007.02.017
  7. Cha, S., H. M. Chae, S. H. Lee, and J. K. Shim, 2017: Branch wood decomposition of tree species in a deciduous temperate forest in Korea. Forests 8(5), 176. https://doi.org/10.3390/f8050176
  8. Chae, H. M., S. Cha, S. H. Lee, M. J. Choi, and J. K. Shim, 2016: Age-related decomposition of Quercus mongolica branches. Plant Ecology 217, 945-957. https://doi.org/10.1007/s11258-016-0620-y
  9. Chong, S. H., and B. S. Park, 2008: Wood properties of the useful tree species grown in Korea. Korea Forest Research Institute 29, 215-285.
  10. Garrett, L. G., M. O. Kimberlley, G. R. Oliver, S. H. Pearce, and P. N. Beets, 2012; Decomposition of coarse woody roots and branches in managed Pinus radiata plantations in New Zealand - A time series approach. Forest Ecology and Management 269, 116-123. https://doi.org/10.1016/j.foreco.2011.12.030
  11. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr, and K. W. Cummins, 1986: Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15, 133-302. https://doi.org/10.1016/S0065-2504(08)60121-X
  12. Holub, S. M., J. D. H. Spears, and K. Lajtha, 2001: A reanalysis of nutrient dynamics in coniferous coarse woody debris. Canadian Journal of Forest Research 31(11), 1894-1902. https://doi.org/10.1139/cjfr-31-11-1894
  13. Jeong, J. H., K. S. Goo, C. H. Lee, H. G. Won, J. O. Byun, and C. Kim, 2003: Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forest Society 92(3), 254-262.
  14. Kalra, Y. P., and D. G. Maynard, 1991: Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E, 116pp.
  15. Kim, C., J. H. Lim, and J. H. Shin, 2003: Nutrient dynamics in litterfall and decomposing leaf litter at the Kwangneung deciduous broad-leaved natural forest. Korean Journal of Agricultural and Forest Meteorology 5(2), 87-93.
  16. Kim, C., K. S. Koo, and J. K. Byun, 2005: Litterfall and nutrient dynamics in pine (Pinus rigida) and larch (Larix leptolepis) plantations. Journal of Korean Forest Society 94(5), 302-306.
  17. Kim, C., S. Kim, G. Baek, and A. R. Yang, 2019: Carbon and nitrogen responses in litterfall and litter decomposition in red pine (Pinus densiflora S. et Z.) stands disturbed by pine wilt disease. Forests 10(3), 244. https://doi.org/10.3390/f10030244
  18. Kim, S. S., and B. H. Lee, 2018: Estimation of the production potential of domestic wood pellets using unused forest biomass by analyzing the potential volume of forest biomass and the growth of forest trees. Journal of Oil and Applied Science 35(1), 247-253. https://doi.org/10.12925/JKOCS.2018.35.1.247
  19. Korea Forest Service, 2018a: The 6th Basic Forest Plan (2018-2037). Korea Forest Service (in Korean), 153pp.
  20. Korea Forest Service, 2018b: Statistical Yearbook of Forestry. Korea Forest Service (in Korean), 445pp.
  21. Korea Meteorological Administration, 2019: Annual Climatological Report. Korea Meteorological Administration (in Korean), 323pp.
  22. Laiho, R., and C. E. Prescott, 2004: Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34(4), 763-777. https://doi.org/10.1139/x03-241
  23. Laskowski, R., and B. Berg, 2006: Litter decomposition: guide to carbon and nutrient turnover. Advanced in Ecological Research, 38, 1-448.
  24. Lee, S. Y., M. Y. Lee, C. H. Yeom, C. G. Kwon, and H. P. Lee, 2009: Comparative analysis of forest fire danger rating on forest characteristics of thinning area and non-thinning on forest fire burnt area. Journal of Korean Institute of Fire Science and Engineering 23(4), 32-39.
  25. Meentemeyer, V., 1984: The geography of organic decomposition rates. Annals of Association of American Geographers 74(4), 551-560. https://doi.org/10.1111/j.1467-8306.1984.tb01473.x
  26. Melillo, J. M., J. D. Aber, and J. F. Muratore, 1982: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3), 621-626.
  27. Mun, H. T., 2004: Decay rate and nutrients dynamics during decomposition of oak branches. The Korean Journal of Ecology 27(2), 93-98.
  28. Palviainen, M., L. Finer, R. Laiho, E. Shorohova, E. Kapitsa, and I. Vanha-Majamaa, 2010: Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management 259(3), 390-398. https://doi.org/10.1016/j.foreco.2009.10.034
  29. Palviainen, M., R. Laiho, H. Makinen, and L. Finer, 2008: Do decomposing Scots pine, Norway spruce, and silver birch stems retain nitrogen? Canadian Journal of Forest Research 38(12), 3047-3055. https://doi.org/10.1139/X08-147
  30. Preston, C. M., J. A. Trofymow, J. Niu, and C. A. Fyfe, 1998: 13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111(1), 51-68. https://doi.org/10.1016/S0378-1127(98)00307-7
  31. Romero, L. B., T. J. Smith III, and J. W. Fourqurean, 2005: Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest. Journal of Ecology 93, 618-631. https://doi.org/10.1111/j.1365-2745.2005.00970.x
  32. SAS Institute Inc., 2003: SAS/STAT Statistical Software. Version 9.1 SAS publishing Cary, NC.
  33. Singh, K., 1969: Studies in decomposition of leaf litter of important trees of tropical deciduous forest at Varanasi. Tropical Ecology 10, 292-311.
  34. Swift, M. J., O. W. Heal, J. M. Anderson, and J. M. Anderson, 1979: Decomposition in terrestrial ecosystems. University of California Press, 372pp.
  35. Tripathi, O. P., H. N. Pandey, and R. S. Tripathi, 2009: Litter production, decomposition and physicochemical properties of soil in 3 developed agroforestry systems of Meghalaya, Northeast India. African Journal of Plant Science 3(8), 160-167.
  36. Ulyshen, M. D., R. Shefferson, S. Horn, M. K. Taylor, B. Bush, C. Brownie, S. Seibold, and M. S. Strickland, 2017: Below-and above-ground effects of deadwood and termites in plantation forests. Ecosphere 8(8), e01910. https://doi.org/10.1002/ecs2.1910
  37. Wambsganss, J., K. P. Stutz, and F. Lang, 2017: European beech deadwood can increase soil organic carbon sequestration in forest topsoils. Forest Ecology and Management 405, 200-209. https://doi.org/10.1016/j.foreco.2017.08.053
  38. Wedderburn, M. E., and J. Carter, 1999: Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biology and Biochemistry 31(3), 455-461. https://doi.org/10.1016/S0038-0717(98)00151-5
  39. Xiaogai, G., Z. Lixiong, X. Wenfa, H. Zhilin, G. Xiansheng, and T. Benwang, 2013: Effect of litter substrate quality and soil nutrients on forest litter decomposition: A reiew. Acta Ecologica Sinica 33, 102-108. https://doi.org/10.1016/j.chnaes.2013.01.006
  40. Yang, F. F., Y. L. Li, G. Y. Zhou, K. O. Wenigmann, D. Q. Zhang, M. Wenigmann, S. Z. Liu, and Q. M. Zhang, 2010: Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management 259(8), 1666-1672. https://doi.org/10.1016/j.foreco.2010.01.046
  41. Zhang, D., D. Hui, Y. Luo, and G. Zhou, 2008: Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1(2), 85-93. https://doi.org/10.1093/jpe/rtn002
  42. Zhang, Y. S., P. K. Jung, S. K. Kim, and I. S. Jo, 2001: The weathering and chemical composition of young residual entisols in Korea. Korean Journal of Soil Science and Fertilizer 34(6), 373-379.