DOI QR코드

DOI QR Code

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Zheng, Dewen (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED)) ;
  • Xian, Yuxi (CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China) ;
  • Hu, Xianhai (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Zhang, Qian (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED)) ;
  • Wang, Shanyu (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED)) ;
  • Li, Mingjun (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Cheng, Congliang (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Liu, Jin (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Wang, Ping (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
  • Received : 2021.04.25
  • Accepted : 2021.05.17
  • Published : 2021.06.27

Abstract

Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Keywords

Acknowledgement

This study was financially supported by Hefei Key Technology Major R &D Projects (No. J2019G19), the Natural Science Foundation of Anhui Education Department (No. KJ2020A0473) and the Natural Science Foundation of Anhui Province (No. 1908085MB55) are acknowledged.

References

  1. Y. Luo, L X, M. Rysz, Y. Wang, H. Zhang and P. J. J. Alvarez, Environ. Sci. Technol., 45, 1827 (2011). https://doi.org/10.1021/es104009s
  2. Q. Q. Zhang, G. G. Ying, C. G. Pan, Y. S. Liu and J. L. Zhao, Environ. Sci. Technol., 49, 6772 (2015). https://doi.org/10.1021/acs.est.5b00729
  3. W. Y. Li and L. J. Xu, Acta Chim. Sinica, 77, 705 (2019). https://doi.org/10.6023/A19030073
  4. F. J. Zhang, X Li, X. Y. Sun, C. Kong, W. J. Xie, Z. Li and J. Liu, Appl. Surf. Sci., 487, 734 (2019). https://doi.org/10.1016/j.apsusc.2019.04.258
  5. Y. Wang, Y. Zhang, T. C. Zhang, G. Xiang, X. L. Wang and S.J. Yuan, ACS Appl. Nano Mater, 3, 8495 (2020). https://doi.org/10.1021/acsanm.0c02083
  6. D. Tu, H. W. Liao and Q. L. Deng, Chemistry Select, 3, 7170 (2018).
  7. J. F. Ma, J. F. Ding, L. M. Yu, L. Y. Li, Y. Kong and S. Komarneni, Appl. Clay Sci., 109, 76, (2015). https://doi.org/10.1016/j.clay.2015.02.009
  8. N. Pugazhenthirana, P. Sathishkuma, S. Murugesanb and S. Anandan, Chem. Eng. J., 168, 1227 (2011). https://doi.org/10.1016/j.cej.2011.02.020
  9. Q. L. Wang, H. Jiang, S. T. Ding, H. M. Noh, B. K. Moon, B. C. Choi, J. S. Shi and J. H. Jeong, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 46, 483 (2016). https://doi.org/10.1080/15533174.2014.988801
  10. H. B. Yu, L B J, H. Wang, B.B. Huang, X.Z. Yuan, J.H. Huang, J. Zhang, and G. M. Zeng, Small, 15, 1901008 (2019).
  11. N. Subhaa, M. Mahalakshmi, M. Myilsamy, B. Neppolian and V. Murugesan, J. Photochem. Photobiol., A, 379, 150 (2019). https://doi.org/10.1016/j.jphotochem.2019.05.004
  12. Y. H. Peng, Y. Zhang, F. H. Tian, J. Q. Zhang and J. Q. Yu, Crit. Rev. Solid. State., 42, 347 (2017). https://doi.org/10.1080/10408436.2016.1200009
  13. Z. Liu, X. Q. Liu, C. L. Yua, L. F. Wei and H. B. Jia, Sep. Purif. Technol., 247, 116951 (2020). https://doi.org/10.1016/j.seppur.2020.116951
  14. T. T. Feng, H. Yin, H. Jiang, X. Chai, X. L. Li, D. Y. Li, J. Wu, X. H. Liu and B. Sun, New. J. Chem, 43, 9606 (2019). https://doi.org/10.1039/C9NJ01651A
  15. X. Ding, W. K. Ho, J. Shang and L. Z. Zhang, Appl. Catal., B, 182, 316 (2016). https://doi.org/10.1016/j.apcatb.2015.09.046
  16. J. L. Li, X. J. Liu, Z. Sun and L. K. Pan, Ceram. Int., 41, 8592 (2015). https://doi.org/10.1016/j.ceramint.2015.03.068
  17. Y. N. Zhu, J. J. Mu, G. H. Zhen, Z. X. Dai, L. Y. Zhang, Y. Q. Ma, D. W. Zhang, Ceram. Int., 42, 17347 (2016). https://doi.org/10.1016/j.ceramint.2016.08.031
  18. L. Xu, H. Y. Xu, S. B. Wu and X.Y. Zhang, Appl. Surf. Sci., 258, 4934 (2012). https://doi.org/10.1016/j.apsusc.2012.01.122
  19. J. L. Wang, M. R. Dong, Q. C. Zhang ,W. S. Lin, Y. Xing, Chinese J. Inorg. Chem., 36, 827 (2020).
  20. H. H. Li, K. W. Li, H. Wang, Mater. Chem. Phys., 116, 134 (2009). https://doi.org/10.1016/j.matchemphys.2009.02.058