DOI QR코드

DOI QR Code

KCI 인문학과 사회과학 학술지의 다학문성과 학제성 분석: 일반 및 기타 분야를 중심으로

Analyzing the Multidisciplinarity and Interdisciplinarity of Humanities and Social Science Journals in KCI: Focusing on General and Miscellaneous Fields

  • 이재윤 (명지대학교 문헌정보학과)
  • 투고 : 2021.05.22
  • 심사 : 2021.06.07
  • 발행 : 2021.06.30

초록

이 연구는 KCI 기타인문학, 기타사회과학, 사회과학일반 분야(이하 '일반 및 기타 분야'로 표기)에 속한 학술지의 다학문성과 학제성을 분석한 후, 이를 바탕으로 일반 및 기타 분야의 학술지 분류에 대한 개선방안을 제안하는 것이 목적이다. 개별 학술지의 다학문성과 학제성은 인용관계에 나타난 학술지 단위 엔트로피와 논문 단위 엔트로피로 각각 측정하였다. 학술지 간 인용관계 분석 결과 KCI 일반 및 기타 분야에는 다학문성과 학제성 측면에서 다양한 학술지가 혼재되어 있는 것으로 나타났다. 일반 및 기타 분야 학술지의 분류를 바로잡기 위해서는 우선 학술연구분야 분류표에 인문학일반 분야를 새로 설정할 필요가 있음을 밝혔다. 나아가서 각 학술지의 다학문성 수준 및 학제성 수준을 고려하여 일반 및 기타 분야 학술지를 재분류하는 방안을 제안하였다.

This study analyzed humanities and social science (HSS) journals of KCI to examine the multidisciplinarity and interdisciplinarity in the general and miscellaneous fields (hereinafter referred to as 'GM fields'), The multidisciplinarity and interdisciplinarity identified in this study will be a foundation to improve classification of KCI journals in GM fields. Each journal's multidisciplinarity and interdisciplinarity were measured by journal-level entropy and document-level entropy, respectively, in the citation relationships. According to the analysis, GM field journals have wide ranges of multidisciplinarity and interdisciplinarity. To improve classification quality of journals in GM fields, the general humanities should be considered as a new classification class for the multidisciplinary and interdisciplinary journals in the humanities. Furthermore, this study proposes a strategy to reclassify GM field journals of HSS according to their multidisciplinarity and interdisciplinarity.

키워드

참고문헌

  1. Choi, Sanghee & Lee, Jae Yun (2020). A bibliometric analysis on research trends and multidisciplinarity of the Journal of Humanities. The Journal of Humanities, 41(3), 13-42. http://doi.org/10.22947/ihmju.2020.41.3.001
  2. Chung, EunKyung (2011). Interdisciplinary collaborations in the domain of digital libraries. Journal of the Korean Society for Information Management, 28(2), 37-51. https://doi.org/10.3743/KOSIM.2011.28.2.037
  3. Chung, Yeon-Kyoung (2000). A study on the reorganization of the knowledge classification scheme. Journal of the Korean Society for Information Management, 17(2), 37-66.
  4. Jeong, Do-Heon & Joo, Hwang-Soo (2018). Discovering interdisciplinary convergence technologies using content analysis technique based on topic modeling. Journal of the Korean Society for Information Management, 35(3), 77-100. https://doi.org/10.3743/KOSIM.2018.35.3.077
  5. Jin, Seol A & Song, Min (2016). Topic modeling based interdisciplinarity measurement in the informatics related journals. Journal of the Korean Society for Information Management, 33(1), 7-32. https://doi.org/10.3743/KOSIM.2016.33.1.007
  6. Kwak, Chul-Wan (2018). Subject association analysis of big data studies: Using co-citation networks. Journal of the Korean Society for Information Management, 35(1), 13-32. http://dx.doi.org/10.3743/KOSIM.2018.35.1.013
  7. Lee, Boram & Chung, EunKyung (2016). A study on interdisciplinary structure of big data research with journal-level bibliographic-coupling analysis. Journal of the Korean Society for Information Management, 33(3), 133-154. https://doi.org/10.3743/KOSIM.2016.33.3.133
  8. Lee, Jae Yun & Jung, Ju Hee (2006). Examining the interdisciplinary structure of Korean cognitive science through analyzing author affiliations and title words. Proceedings of the 13th Conference of the Korean Society for Information Management, 127-134.
  9. Lee, Jae Yun (2020). Improved method for considering citation measures in evaluating Korean journals. Journal of the Korean Society for Information Management, 37(1), 197-220. https://doi.org/10.3743/KOSIM.2020.37.1.197
  10. Lee, Jee Yeon, Kam, Miah, Han, Nam Gi, & Song, Hanna (2016). Analysis of the role of library and information science related research efforts in Korean human computer interaction subject field. Journal of the Korean Society for Information Management, 33(2), 177-200. http://doi.org/10.3743/KOSIM.2016.33.2.177
  11. Lee, Jee Yoen & Kam, Miah (2018). Exploration on possibility of the disciplinary convergence of the user studies and the research in practice. Journal of the Korean Society for Information Management, 35(1), 129-155. https://doi.org/10.3743/KOSIM.2018.35.1.129
  12. National Research Foundation of Korea (2016). Academic Standard Classification. Retrieved from http://www.nrf.re.kr/biz/doc/class/view?menu_no=323
  13. National Research Foundation of Korea (2020). KCI 2019 Citation Indicators. Retrieved from http://www.kci.go.kr
  14. Park, Miyoung (2019). Redesigning the Academic Standard Classification for the Survey of Academic Research Activities. Policy research report, National Research Foundation of Korea.
  15. Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2019). Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient. Journal of Informetrics, 13(1), 255-269. https://doi.org/10.1016/j.joi.2018.12.006
  16. Morillo, F., Bordons, M., & Gomez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics 51(1), 203-222. https://doi.org/10.1023/A:1010529114941
  17. Rafols, I. & Meyer, M. (2007). Diversity measures and network centralities as indicators of interdisciplinarity: Case studies in bionanoscience. Proceedings of International Conference on Scientometrics & Informetrics (ISSI), 2, 631-637.
  18. Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425-465. http://doi.org/10.1023/B:SCIE.0000018542.71314.38