DOI QR코드

DOI QR Code

First Report of Tomato Spotted Wilt Virus in Angelica acutiloba

당귀에서 발생한 토마토반점위조바이러스의 감염 첫 보고

  • Kwak, Hae-Ryun (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Hong, Su-Bin (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Choi, Hyeon-Yong (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Park, Gosoo (Nonsan Agricultural Technology Center) ;
  • Hur, On-Sook (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Byun, Hee-Seong (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Choi, Hong-Soo (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Kim, Mikyeong (Department of Plant Medicine, Chungbuk National University)
  • 곽해련 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 홍수빈 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 최현용 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박고수 (논산시농업기술센터) ;
  • 허온숙 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 변희성 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 최홍수 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김미경 (충북대학교 식물의학과)
  • Received : 2021.03.11
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

In June 2019, Angelica acutiloba plants showing virus-like symptoms such as chlorotic local lesion and mosaic on the leaves were found in a greenhouse in Nonsan, South Korea. To identify the causal virus, we collected 6 symptomatic A. acutiloba leaf samples and performed reverse transcription polymerase chain reaction (RT-PCR) analysis using specific detection primers for three reported viruses including tomato spotted wilt virus (TSWV). RT-PCR results showed that five symptomatic samples were positive for TSWV. Mechanical sap inoculation of one of the collected TSWV isolate (TSWV-NS-AG28) induced yellowing, chlorosis and mosaic symptoms in A. acutiloba and necrotic local lesions and mosaic in Solanaceae species. Phylogenetic analysis based on the complete genome sequences showed that TSWV-NS-AG28 had a maximum nucleotide identity with TSWVNS-BB20 isolated from butterbur in Nonsan, South Korea. To our knowledge, this is the first report of TSWV infection in A. acutiloba.

2019년 6월 충남 논산의 당귀 재배 농가에서 원형반점, 괴사반점, 황화, 모자이크 등의 증상을 보이는 당귀잎을 채집하였고, 이들 시료에 대한 바이러스 감염 여부를 확인하기 위하여 전자현미경 검경과 감염우려가 있는 바이러스 3종(cucumber mosaic virus, broad bean wilt virus 2, tomato spotted wilt virus [TSWV])에 대해 reverse transcription polymerase chain reaction 진단을 수행한 결과 TSWV에 대해 양성반응을 보였다. 당귀 TSWV의 생물학적 특성을 구명하기 위해 순수분리하여 5과 28종의 지표식물과 일당귀에 즙액접종하여 기주범위와 병원성을 확인하였다. TSWV의 3 segment (L, M, S)의 전체 염기서열을 결정하고 기존에 보고된 TSWV 분리주와 계통분석을 한 결과, 당귀 TSWV 분리주(NS-AG-28)는 논산지역의 머위 분리주(TSWV-NS-BB20)와 가장 유사한 것으로 나타났다. TSWV는 넓은 기주범위를 가지고 있고 특히 고추, 토마토 등 가지과 작물에 큰 피해를 주고 있기 때문에, 당귀가 TSWV의 중간기주로서 작용하지 않도록 주의하고, 당귀의 바이러스병 피해를 예방하기 위하여 지속적인 모니터링이 요구된다.

Keywords

Acknowledgement

This research was supported by a grant from the Agenda Program (PJ01424001) funded by the Rural Development Administration of Korea.

References

  1. Adkins, S. 2000. Tomato spotted wilt virus: positive steps towards negative success. Mol. Plant Pathol. 1: 151-157. https://doi.org/10.1046/j.1364-3703.2000.00022.x
  2. Cho, N. J., Lee, W. H., Kim, K. K. and Han, H. S. 2017. Investigation of the antioxidant effect of Angelicae Radix from Korea, China and Japan. J. Physiol. Pathol. Korean Med. 31: 182-187. https://doi.org/10.15188/kjopp.2017.06.31.3.182
  3. Cho, S.-Y., Kim, S.-M., Kim, S. and Lee, B. C. 2020. First report of tomato spotted wilt virus infecting Arachis hypogaea in Korea. J. Plant Pathol. 102: 271. https://doi.org/10.1007/s42161-019-00410-7
  4. Hitchborn, J. H. and Hills, G. J. 1965. The use of negative staining in the electron microscopic examination of plant viruses in crude extracts. Virology 27: 528-540. https://doi.org/10.1016/0042-6822(65)90178-9
  5. Kim, J.-H., Choi, G.-S., Kim, J.-S. and Choi, J.-K. 2004. Characterization of tomato spotted wilt virus from paprika in Korea. Plant Pathol. J. 20: 297-301. https://doi.org/10.5423/PPJ.2004.20.4.297
  6. Kim, M., Kang, H.-J., Kwak, H.-R., Kim, J.-E., Kim, J., Seo, J.-K. et al. 2017. First report of impatiens necrotic spot virus in Hoya carnosa in Korea. Res. Plant Dis. 23: 383-387. (In Korean) https://doi.org/10.5423/RPD.2017.23.4.383
  7. Kim, S. A., Oh, H. K., Kim, J. Y., Hong, J. W. and Cho, S. I. 2011. A review of pharmacological effects of Angelica gigas, Angelica sinensis, Angelica acutiloba and their bioactive compounds. J. Korean Orient. Med. 32: 1-24.
  8. KOSIS. 2019. Korea Statistical Information Servie. URL https://kosis.kr [30 May 2021].
  9. Kwak, H.-R., Go, W.-R., Kim, J.-E., Park, G., Baek, E., Kim, M. et al. 2018. Spread of tomato spotted wilt orthotospovirus into various vegetables in Nonsan area of Korea. In: Proceedings of 2018 Annual Meeting on the Korean Society of Pesticide Science, ed. by The Korean Society of Pesticide Science, p. 319. The Korean Society of Pesticide Science, Suwon, Korea.
  10. Kwak, H.-R., Go, W.-R., Kim, M., Kim, C.-S., Choi, H.-S., Seo, J.-K. et al. 2017. First report of broad bean wilt virus 2 in Gynura procumbens in Korea. Plant Dis. 101: 514.
  11. Kwak, H.-R., Kim, M.-K., Nam, M., Kim, J.-S., Kim, K.-H., Cha, B. et al. 2013. Genetic compositions of broad bean wilt virus 2 infecting red pepper in Korea. Plant Pathol. J. 29: 274-284. https://doi.org/10.5423/PPJ.OA.12.2012.0190
  12. Kwak, H.-R., Son, S.-W., Choi, H.-Y., Go, W.-R., Kim, J.-E., Baek, E. et al. 2020. First report of tomato spotted wilt virus in Lycium chinense. Australas. Plant Dis. Notes 15: 5. https://doi.org/10.1007/s13314-020-0374-1
  13. Kwon, S.-J., Cho, I.-S., Yoon, J.-Y., Choi, S.-K. and Choi, G.-S. 2016. First report of broad bean wilt virus 2 in Dioscorea opposita Thunb. in Korea. Plant Dis. 100: 538.
  14. Kwon, S.-J. and Seo, J.-K. 2019. First report of broad bean wilt virus 2 in Achyranthes bidentata in Korea. Plant Dis. 103: 165. https://doi.org/10.1094/PDIS-06-18-0967-PDN
  15. Morse, J. G. and Hoddle, M. S. 2006. Invasion biology of thrips. Annu. Rev. Entomol. 51: 67 -89. https://doi.org/10.1146/annurev.ento.51.110104.151044
  16. Pappu, H. R., Jones, R. A. C. and Jain, R. K. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141: 219-236. https://doi.org/10.1016/j.virusres.2009.01.009
  17. Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C. and Marchoux, G. 2003. An update of the host range of tomato spotted wilt virus. J. Plant Pathol. 85: 227-264.
  18. Rural Development Administration. 2018. Diagnosis Method for Newly Developed Angelica acutiloba Mosaic Symptom. Rural Development Administration, Suwon, Korea.
  19. Yoon, J. Y., Choi, G. S., Kwon, S. J. and Cho, I. S. 2019. First report of tomato spotted wilt virus infecting Peperomia obtusifolia in South Korea. Plant Dis. 103: 593.
  20. Zhang, Y., Wang, R., Xie, Z., Wang, Y., Zhao, X., Liu, Y. et al. 2020. Rapid visual detection of Japanese hornwort mosaic virus infecting Angelica sinensis by reverse transcription loop-mediated isothermal amplification. Ann. Appl. Biol. 178: 489-497.
  21. Zhang, Y., Wang, R., Wang, J., Chang, J., Zhang, X., Chen, T. et al. 2009. A new potyvirus first isolated and identified from Angelica sinensis. Virus Genes 39: 120-125. https://doi.org/10.1007/s11262-009-0361-2