DOI QR코드

DOI QR Code

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI

IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석

  • Jeon, Hyeonmyeong (ITS Performance Evaluation Center, Construction Test & Certification Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jisoo (Smart Mobility Research Center, Dep. of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • 전현명 (한국건설기술연구원 건설시험인증본부 ITS 성능평가센터) ;
  • 김지수 (한국건설기술연구원 미래융합연구본부 스마트모빌리티연구센터)
  • Received : 2021.04.30
  • Accepted : 2021.05.18
  • Published : 2021.06.30

Abstract

In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.

자율주행차량의 상용화를 앞당기기 위해서는 현재 자율주행자동차의 주행안전성을 저하시키는 원인을 정확히 파악하고 이를 개선하는 노력이 필요하다. 본 연구는 우리나라에서 자율 주행을 연구하는 전문가를 대상으로 중요도-만족도(IPA)와 포커스그룹 인터뷰(FGI)를 수행하여 자율주행차량의 주행안전성에 문제가 발생하는 원인과 국내의 자율주행 기술 수준 등을 파악하였다. 설문 결과 현재 자율주행 핸디캡 중에 공사 구간, 폭우/폭설 상황, 미세먼지 상황, 포트홀 존재 상황이 중요도보다 현재 기술 수준에 대한 만족도가 낮아 우선적인 연구개발이 요구되는 것으로 나타났다. 이 중 공사 구간과 포트홀은 도로/도로 시설물의 불량과 센서 자체의 성능이, 날씨와 연결된 상황은 센서의 성능과 알고리즘 부재 등이 가장 큰 원인으로 분석되었다. 안전한 자율주행의 조속한 실현을 위해서는 자율주행차량의 주행안전성을 저해하는 원인에 대한 명확한 파악과 해결이 지속해서 수행되어야 할 것이다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 임무형 주요사업(21주요-대2-임무/자율주행차량의 주행안전성 확보를 위한 도로 시설물 기술 개발)의 지원을 받아 수행하였습니다.

References

  1. ADVS(2021), https://avds.kotsa.or.kr/main/Main.do, 2021.05.12.
  2. Choi K. C., Choi Y. H. and Oh S. H.(2006), "Using Importance-Performance Analysis to Improve Traffic Information Disseminating Strategies on VMS," Journal of the Korean Society of Civil Engineers, vol. 26, no. 5, pp.747-754.
  3. Dixit V. V., Chand S. and Nair D. J.(2016), "Autonomous vehicles: disengagements, accidents and reaction times," PLoS One, vol. 11, no. 12, e0168054. https://doi.org/10.1371/journal.pone.0168054
  4. Favaro F., Eurich S. and Nader N.(2018), "Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations," Accident Analysis & Prevention, vol. 110, pp.136-148. https://doi.org/10.1016/j.aap.2017.11.001
  5. KICT(2020), Improvement Road Infrastructures to Strengthen Driving Safety of Automated Driving Car, The Second report, South Korea.
  6. Kim W. K.(2020), "Main Contents and Future Plans of the Automated Driving Technology Development Innovation Project," Monthly KOTI Magazine on Transportation, vol. 272, pp.27-35.
  7. KPMG International(2020), 2020 Autonomous Vehicle Readiness Index, p.1.
  8. Lv C., Cao D., Zhao Y., Auger D. J., Sullman M., Wang H. et al.(2018), "Analysis of Autopilot Disengagements Occurring during Autonomous Vehicle Testing," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp.58-68. https://doi.org/10.1109/JAS.2017.7510745
  9. Martilla J. A. and James J. C.(1977), "Importance-Performance Analysis," Journal of Marketing, vol. 41, no. 1, pp.77-79. https://doi.org/10.2307/1250495
  10. Park B., Roh C. and Moon B.(2015), "Adequacy Analysis of Tunnel Management System in terms of Operational Safety," The Journal of The Korea Institute of Intelligent Transport Systems, vol. 14, no. 5, pp.1-12. https://doi.org/10.12815/kits.2015.14.5.001
  11. Roh C. G. and Im I. J.(2020), "A review on Handicap Sections and Situations to Improve Driving Safety of Automated Vehicles," Sustainability MDPI, vol. 12, 5509;doi:10.3390/su12145509.
  12. Schoettle B.(2017), Sensor Fusion: A Comparison of Sensing Capabilities of Human Drivers and Highly Automated Vehicles, SWT-2017-12, University of Michigan, Transportation Research Institute, Ann Arbor, USA.
  13. Wang S. and Li Z.(2019), "Exploring causes and effects of automated vehicle disengagement using statistical modeling and classification tree based on field test data," Accident Analysis & Prevention, vol. 129, pp.44-54. https://doi.org/10.1016/j.aap.2019.04.015
  14. Waymo One(2021), https://waymo.com/waymo-one/, 2021.04.10.
  15. Yun H. N., Kim S. L., Lee J. W. and Yang J. H.(2018), "Analysis of Cause Disengagement Based on U.S. California DMV Autonomous Driving Disengagement Report," Transaction of KSAE, vol. 26, no. 4, pp.464-475. https://doi.org/10.7467/KSAE.2018.26.4.464

Cited by

  1. Performance of Mobile LiDAR in Real Road Driving Conditions vol.21, pp.22, 2021, https://doi.org/10.3390/s21227461