DOI QR코드

DOI QR Code

Effects of different day length and wind conditions to the seedling growth performance of Phragmites australis

  • Hong, Mun Gi (Department of Science Education, Gwangju National University of Education) ;
  • Nam, Bo Eun (Department of Biology Education, Seoul National University) ;
  • Kim, Jae Geun (Department of Biology Education, Seoul National University)
  • 투고 : 2021.03.25
  • 심사 : 2021.04.22
  • 발행 : 2021.06.30

초록

Background: To understand shade and wind effects on seedling traits of common reed (Phragmites australis), we conducted a mesocosm experiment manipulating day length (10 h daytime a day as open canopy conditions or 6 h daytime a day as partially closed canopy conditions) and wind speed (0 m/s as windless conditions or 4 m/s as windy conditions). Results: Most values of functional traits of leaf blades, culms, and biomass production of P. australis were higher under long day length. In particular, we found sole positive effects of long day length in several functional traits such as internode and leaf blade lengths and the values of above-ground dry weight (DW), rhizome DW, and total DW. Wind-induced effects on functional traits were different depending on functional traits. Wind contributed to relatively low values of chlorophyll contents, angles between leaf blades, mean culm height, and maximum culm height. In contrast, wind contributed to relatively high values of culm density and below-ground DW. Conclusions: Although wind appeared to inhibit the vertical growth of P. australis through physiological and morphological changes in leaf blades, it seemed that P. australis might compensate the inhibited vertical growth with increased horizontal growth such as more numerous culms, indicating a highly adaptive characteristic of P. australis in terms of phenotypic plasticity under windy environments.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057373) and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (NRF-2018R1A2B2002267).

참고문헌

  1. Agoston-Szabo E, Dinka M. Decomposition of Typha ansgustifolia and Phragmites australis in the littoral zone of a shallow lake. Biologia. 2008;63(6):1104-10. https://doi.org/10.2478/s11756-008-0154-4.
  2. Amsberry L, Baker MA, Ewanchuk PJ, Bertness MD. Clonal integration and the expansion of Phragmites australis. Ecol Appl. 2000;10(4):1110-8. https://doi.org/10.1890/1051-0761(2000)010[1110:CIATEO]2.0.CO;2.
  3. Armstrong J, Afreen-Zobayed F, Blyth S, Armstrong W. Phragmites australis: effects of shoot submergence on seedling growth and survival and radial oxygen loss from roots. Aquat Bot. 1999;64(3-4):275-89. https://doi.org/10.1016/S0304-3770(99)00056-X.
  4. Armstrong J, Armstrong W. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot. 1991;39(1-2):75-88. https://doi.org/10.1016/0304-3770(91)90023-X.
  5. Armstrong J, Armstrong W, van der Putten WH. Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytol. 1996;133(3):399-414. https://doi.org/10.1111/j.1469-8137.1996.tb01907.x.
  6. Asaeda T, Hietz P, Tanaka N, Karunaratne S. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquat Bot. 2002;73(3):223-39. https://doi.org/10.1016/S0304-3770(02)00027-X.
  7. Asaeda T, Karunaratne S. Dynamic modelling of the growth of Phragmites australis: model description. Aquat Bot. 2000;67(4):301-18. https://doi.org/10.1016/S0304-3770(00)00095-4.
  8. Baker CJ, Stering M, Berry P. A generalized model of crop lodging. J Theor Biol. 2014;363:1-12. https://doi.org/10.1016/j.jtbi.2014.07.032.
  9. Baldi A. Microclimate and vegetation edge effects in a reedbed in Hungary. Biodiv Conserv. 1999;8(12):1697-706. https://doi.org/10.1023/A:1008901514944.
  10. Baldi A. The importance of temporal dynamics of edge effect in reedbed design: a 12-year study on five bird species. Wetl Ecol Manag. 2005;13(2):183-9. https://doi.org/10.1007/s11273-004-0313-5.
  11. Belzile F, Labbe J, LeBlanc M-C, Lavoie C. Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biol Invasions. 2010;12(7):2243-50. https://doi.org/10.1007/s10530-009-9634-x.
  12. Brisson J, Paradis E, Bellavance M-E. Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: a possible consequence of global warming? Rhodora. 2008; 110(942):225-30. https://doi.org/10.3119/07-15.1.
  13. Clevering OA, Brix H, Lukavska J. Geographic variation in growth responses in Phragmites australis. Aquat Bot. 2001;69(2-4):89-108. https://doi.org/10.1016/S0304-3770(01)00132-2.
  14. Clevering OA, Lissner J. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot. 1999;64(3-4):185-208. https://doi.org/10.1016/S0304-3770(99)00059-5.
  15. Emery RJN, Reid DM, Chinnappa CC. Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind. Plant Cell Environ. 1994;17(6):691-700. https://doi.org/10.1111/j.1365-3040.1994.tb00161.x.
  16. Engloner AI. Structure, growth dynamics and biomass of reed (Phragmites australis): a review. Flora. 2009;204(5):331-46. https://doi.org/10.1016/j.flora.2008.05.001.
  17. Hansson L-A, Graneli W. Effects of winter harvest on water and sediment chemistry in a stand of reed (Phragmites australis). Hydrobiologia. 1984; 112(2):131-6. https://doi.org/10.1007/BF00006917.
  18. Haslam SM. The development of the annual population in Phragmites communis Trin. Ann Bot. 1969;34:571-91. https://doi.org/10.1093/oxfordjournals.aob.a084392
  19. Haslam SM. Phragmites australis Trin. (Arundo phragmites L., ? Phragmites australis (Cav.) Trin. ex Steudel). J Ecol. 1972;60(2):585-610. https://doi.org/10.2307/2258363.
  20. Haslam SM. The performance of Phragmites communis Trin. in relation to temperature. Ann Bot. 1975;39(4):883-8. https://doi.org/10.1093/oxfordjournals.aob.a085006.
  21. Haslam SM. Early decay of Phragmites thatch: an outline of the problem. Aquat Bot. 1989;35(1):129-32. https://doi.org/10.1016/0304-3770(89)90073-9.
  22. Hong MG, Kim JG. Growth characteristics of cutting culms sectioned at different positions from three reed population. J Korean Soc Environ Res Technol. 2012;15:53-62.
  23. Hong MG, Kim JG. Role and effects of winter buds and rhizome morphology on the survival and growth of common reed (Phragmites australis). Paddy Water Environ. 2014;12(Supp.1):S203-9.
  24. Hong MG, Nam BE, Kim JG. Vegetation and water characteristics of floating mat in a coastal lagoon as the habitat for endangered plant species. J Ecol Environ. 2018;42(1):28. https://doi.org/10.1186/s41610-018-0090-3.
  25. Hong MG, Nam BE, Kim JG. Differences in functional traits of leaf blade and culm of common reed in four habitat types. J Ecol Environ. 2019;43(1):12. https://doi.org/10.1186/s41610-019-0113-8.
  26. Hughes AR, Schenck FR, Bloomberg J, Hanley TC, Feng D, Couhier TC, et al. Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biol Invasions. 2016;18(9):2577-95. https://doi.org/10.1007/s10530-016-1143-0.
  27. Jaffe MJ, Forbes S. Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul. 1993;12(3):313-24. https://doi.org/10.1007/BF00027213.
  28. Karstens S, Jurasinski G, Glatzel S, Buczko U. Dynamics of surface elevation and microtopography in different zones of a coastal Phragmites wetland. Ecol Eng. 2016;94:152-63. https://doi.org/10.1016/j.ecoleng.2016.05.049.
  29. Karunaratne S, Asaeda T, Yutani K. Growth performance of Phragmites australis in Japan: influence of geographic gradient. Environ Exp Bot. 2003;50(1):51-66. https://doi.org/10.1016/S0098-8472(02)00114-4.
  30. Klimes L, Klimesova J, Cizkova H. Carbohydrate storage in rhizomes of Phragmites australis: the effects of altitude and rhizome age. Aquat Bot. 1999;64(2):105-10. https://doi.org/10.1016/S0304-3770(99)00016-9.
  31. Klotzli F. uber Belastung und Produktion in Schilfrohrichten. Verh Ges Okol Saarbrucken. 1973;1973:237-47.
  32. Kobbing JF, Thevs N, Zerbe S. The utilisation of reed (Phragmites australis): a review. Mires Peat. 2013;13:1-14.
  33. Lessmann JM, Brix H, Vauer V, Clevering OA, Comin FA. Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquat Bot. 2001;69(2-4):109-26. https://doi.org/10.1016/S0304-3770(01)00133-4.
  34. Liu B, Liu Z, Wang L, Wang Z. Responses of rhizomatous grass Phragmites communis to wind erosion: effects on biomass allocation. Plant Soil. 2014; 380(1-2):389-98. https://doi.org/10.1007/s11104-014-2104-y.
  35. Murren CJ, Pigliucci M. Morphological responses to simulated wind in the genus Brassica (Brassicaceae): allopolyploids and their parental species. Am J Bot. 2005;92(5):810-8. https://doi.org/10.3732/ajb.92.5.810.
  36. Nam BE, Kim JG, Hong MG. Vegetation and water characteristics of an eco-technological water purifying biotope in Yongin. J Wetl Res. 2018; 20:432-45.
  37. Nam BE, Park Y-J, Gil K-E, Kim J-H, Kim JG, Park C-M. Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon. BMC Plant Biol. 2020;20(1):335. https://doi.org/10.1186/s12870-020-02544-8.
  38. Nilsson C, Gardfjell M, Grelsson G. Importance of hydrochory in structuring plant communities along rivers. Can J Bot. 1991;69(12):2631-3. https://doi.org/10.1139/b91-328.
  39. Saltonstall K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci USA. 2002;99(4): 2445-9. https://doi.org/10.1073/pnas.032477999.
  40. Soons MB. Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci. 2006;9(2):271-8. https://doi.org/10.1111/j.1654-109X.2006.tb00676.x.
  41. Takeda S, Kurihara Y. The effects of the reed, Phragmites australis (Trin.), on substratum grain-size distribution in a salt marsh. J Oceanogr Soc Jpn. 1988; 44(3):103-12. https://doi.org/10.1007/BF02302617.
  42. Thompson DJ, Shay JM. The effects of fire on Phragmites australis in the Delta marsh, Manitoba. Can J Bot. 1985;63(10):1864-9. https://doi.org/10.1139/b85-261.
  43. Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia. 2011;674(1):133-56. https://doi.org/10.1007/s10750-011-0738-9.
  44. Whitehead FH, Luti R. Experimental studies of the effect of wind on plant growth and anatomy: I. Zea mays. New Phytol. 1962;61(1):56-8. https://doi.org/10.1111/j.1469-8137.1962.tb06273.x.
  45. Zhou L, Zhou G, Liu S, Sui X. Seasonal contribution and interannual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrol Process. 2010;24(8):1039-47. https://doi.org/10.1002/hyp.7545.