DOI QR코드

DOI QR Code

Diel and seasonal activity pattern of alien sika deer with sympatric mammalian species from Muljangori-oreum wetland of Hallasan National Park, South Korean

  • Banjade, Maniram (Faculty of Science Education, Jeju National University) ;
  • Han, Sang-Hyun (Korean National Park Institute of Biodiversity Conservation, Korean National Park Service) ;
  • Jeong, Young-Hun (Faculty of Science Education, Jeju National University) ;
  • Oh, Hong-Shik (Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Faculty of Science Education, Jeju National University)
  • 투고 : 2021.01.09
  • 심사 : 2021.05.26
  • 발행 : 2021.06.30

초록

Background: Sika deer, Cervus nippon, were originally introduced to South Korea from Japan and Taiwan for commercial farming purposes. Unfortunately, they were released into the wild during religious events and have since begun to impact the native ecosystem and species endemic to South Korea. The study of activity patterns can improve our understanding of the environmental impact of non-native species and their association with sympatric species. Using camera traps, we studied the diel and seasonal activity patterns of non-native sika deer and quantified the temporal overlap with sympatric mammalian species in the Muljangori-oreum wetlands of Hallasan National Park, South Korea. Results: A total of 970 trap events were recorded for five mammalian species from nine locations during the camera-trap survey. Siberian roe deer (Capreolus pygargus tianschanicus) had the highest number of recorded events (72.0%), followed by sika deer (Cervus nippon) (16.2%), wild boar (Sus scrofa) (5.0%), Asian badger (Meles leucurus) (4.5%), and the Jeju weasel (Mustela sibirica quelpartis) (2.0%). Sika deer had bimodal activity patterns throughout the year, with peaks throughout the spring-autumn twilight, and day and night time throughout the winter. Relating the daily activity of sika deer with other mammalian species, roe deer expressed the highest degree of overlap (Δ4 = 0.80) while the Asian badger demonstrated the lowest overlap (Δ4 = 0.37). Conclusions: Our data show that sika deer are a crepuscular species with seasonal variations in daily activity patterns. Additionally, we identified the temporal differences in activity peaks between different mammals in the Muljangori-oreum wetlands and found higher degree of overlap between sika deer and roe deer during twilight hours.

키워드

과제정보

The research was supported by the 2020 scientific promotion program funded by Jeju National University.

참고문헌

  1. Adhikari P, Jeon J, Kim HW, Shin M, Adhikari P, Seo C. Potential impact of climate change on plant invasion in the Republic of Korea. J Ecol Environ. 2019;43(1):36. https://doi.org/10.1186/s41610-019-0134-3.
  2. Adhikari P, Park SM, Kim TW, Lee JW, Kim GR, Han SH, et al. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J Asia-Pacific Biodivers. 2016;9(4):422-8. https://doi.org/10.1016/j.japb.2016.09.001.
  3. Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K, Schober F. Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am J Physiol Regul Integr Comp Physiol. 2004;286(1 55-1):174-81. https://doi.org/10.1152/ajpregu.00593.2002
  4. Bartos L. Sika deer in continental Europe In: McCullough DR, Kaji K, Takatsuki S (eds) Sika deer. Biology and management of native and introduced populations. Springer, Berlin Heidelberg New York 5. 2009.
  5. Bennie JJ, Duffy JP, Inger R, Gaston KJ. Biogeography of time partitioning in mammals. Proc Natl Acad Sci U S A. 2014;111(38):13727-32. https://doi.org/10.1073/pnas.1216063110.
  6. Berger A, Scheibe KM, Brelurut A, Schober F, Streich WJ. Seasonal variation of diurnal and ultradian rhythms in red deer. Biol Rhythm Res. 2002;33(3):237-53. https://doi.org/10.1076/brhm.33.3.237.8259.
  7. Bertolino S, di Montezemolo NC, Bassano B. Food-niche relationships within a guild of alpine ungulatesincluding an introduced specie s. J Zool. 2009; 277(1):63-9. https://doi.org/10.1111/j.1469-7998.2008.00512.x.
  8. Biedrzycka A, Solarz W, Okarma H. Hybridization between native and introduced species of deer in Eastern Europe Hybridization between native and introduced species of deer in Eastern Europe. J Mammal. 2012;93(5):1331-41. https://doi.org/10.1644/11-MAMM-A-022.1.
  9. Borkowski J. Flight behaviour and observability in human-disturbed sika deer Flight behaviour and observability in human-disturbed sika deer. Acta Theriol (Warsz). 2001;46(2):195-206. https://doi.org/10.4098/AT.arch.01-21.
  10. Bourgoin G, Garel M, Blanchard P, Dubray D, Maillard D, Gaillard JM. Daily responses of mouflon (Ovis gmelini musimon × Ovis sp.) activity to summer climatic conditions. Can J Zool. 2011;89(9):765-73. https://doi.org/10.1139/z11-046.
  11. Brivio F, Bertolucci C, Tettamanti F, Filli F, Apollonio M, Grignolio S. The weather dictates the rhythms: Alpine chamois activity is well adapted to ecological conditions. Behav Ecol Sociobiol. 2016;70(8):1291-304. https://doi.org/10.1007/s00265-016-2137-8.
  12. Carpio AJ, Guerrero-casado J, Barasona JA. Hunting as a source of alien species: a European review. Biol Invasions. 2016;19(4):1197-1211.
  13. Centore L, Ugarkovic D, Scaravelli D, Safner T, Panduric K, Sprem N. Locomotor activity pattern of two recently introduced non-native ungulate species in a Mediterranean habitat. Folia Zool. 2018;67(1):17-24.
  14. Claudino-Sales V. Coastal world heritage sites, vol. 28; 2019.
  15. Cooke AS, Farrell L. Impact of muntjac deer ( Muntiacus reevesi ) at Monks Wood National Nature Reserve, Cambridgeshire, eastern England. Forestry. 2001; 74(3):241-250. https://doi.org/10.1093/forestry/74.3.241
  16. Cote SD. Extirpation of a large black bear population by introduced white-tailed deer. Conserv Biol. 2005;19(5):1668-71. https://doi.org/10.1111/j.1523-1739.2005.00252.x.
  17. Doncaster C, Davey AJ. Book Review: Analysis of variance and covariance: how to choose and construct models for the life sciences, vol. 140. Cambridge: Cambride University Press; 2007. https://doi.org/10.1017/CBO9780511611377.
  18. Ensing EP, Ciuti S, De Wijs FALM, Lentferink DH, Hoedt A, Boyce MS, et al. GPS based daily activity patterns in european red deer and North American elk (Cervus elaphus): Indication for a weak circadian clock in ungulates. PLoS One. 2014;9(9):e106997. https://doi.org/10.1371/journal.pone.0106997.
  19. Feretti F. Interspecific aggression between fallow and roe deer. Ethol Ecol Evol. 2011;23(2):179-86. https://doi.org/10.1080/03949370.2011.554883.
  20. Foster VC, Sarmento P, Sollmann R, Torres N, Jacomo ATA, Negroes N, et al. Jaguar and Puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica. 2013;45(3):373-9. https://doi.org/10.1111/btp.12021.
  21. Fraser KW. Comparative rumen morphology of sympatric sika deer (Cervus nippon) and red deer (C. elaphus scoticus) in the Ahimanawa and Kaweka Ranges, central North Island, New Zealand. Oecologia. 1996;105(2):160-6. https://doi.org/10.1007/BF00328541.
  22. Garcia-Llorente M, Martin-Lopez B, Gonzalez JA, Alcorlo P, Montes C. Social perceptions of the impacts and benefits of invasive alien species: implications for management. Biol Bull. 2008;1:2969-83.
  23. Green RA, Bear GD. Seasonal cycles and daily activity patterns of rocky mountain elk. J Wildl Manag. 1990;54(2):272. https://doi.org/10.2307/3809041.
  24. Greenberg S. Timelapse User Guide: An image analyser for camera traps. Greenberg Consulting Inc. / University of Calgary, Calgary, Alberta, Canada. 2019:1-127. Version 2.2.2.9.
  25. Igota H, Sakuragi M, Uno H, Kaji K, Kaneko M, Akamatsu R, et al. Seasonal migration patterns of female sika deer in eastern Hokkaido, Japan. Ecol Res. 2004;19(2):169-78. https://doi.org/10.1111/j.1440-1703.2003.00621.x.
  26. Ikeda T, Takahashi H, Igota H, Matsuura Y. Effects of culling intensity on diel and seasonal activity patterns of sika deer (Cervus nippon). Sci Rep. 2019;9:1-8. https://doi.org/10.1038/s41598-018-37186-2
  27. Ikeda T, Takahashi H, Yoshida T, Igota H, Matsuura Y, Takeshita K, et al. Seasonal variation of activity pattern in sika deer ( Cervus nippon ) as assessed by camera trap survey. Mammal Study. 2015;40(4):199-205. https://doi.org/10.3106/041.040.0401.
  28. Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, et al. Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS One. 2016;11(10):e0163602. https://doi.org/10.1371/journal.pone.0163602.
  29. Jin K. The analytical study for sika deer behaviour pattern and characteristics of their habitats through monitoring the sika deer released at the urban forests in South Korea. Korean J Environ Biol. 2013;31(4):322-32. https://doi.org/10.11626/KJEB.2013.31.4.322.
  30. Jo YS, Baccus JT, Koprowski JL. Mammals of Korea: a review of their taxonomy, distribution and conservation status. Zootaxa. 2018;4522(1):1-216. https://doi.org/10.11646/zootaxa.4522.1.1.
  31. Kaji K, Saitoh T, Uno H, Matsuda H, Yamamura K. Adaptive management of sika deer populations in Hokkaido, Japan: theory and practice. Popul Ecol. 2010; 52(3):373-87. https://doi.org/10.1007/s10144-010-0219-4.
  32. Kim WB, Kim YH, Oh JG. Distribution of birds in the Jeju seonheul gotjawal region, a survey site of long-term ecological study. J Korean Nat. 2012;5(2): 115-9. https://doi.org/10.7229/jkn.2012.5.2.115.
  33. Koh HS, Yang BK, Lee BK, Jang KH, In ST, Lee JH, et al. Species identification of the sika deer, in deer farms from Northeastern China, North Korea, and Korea, revealed by the sequencing of mitochondrial DNA cytochrome b gene. Bull Nat Sci. 2010;24:7-11.
  34. Lee M. Discovering wetlands: a guide to ramsar wetlands and wetland protection areas of Korea; 2008.
  35. Liang Y, Kuo H, Giordano AJ, Pei KJ. Seasonal variation in herd composition of the Formosan sika deer (Cervus nippon taiouanus) in a forest-grassland mosaic habitat of southern Taiwan. Glob Ecol Conserv. 2020;24(1):e01283. https://doi.org/10.1016/j.gecco.2020.e01283.
  36. Linkie M, Ridout MS. Assessing tiger-prey interactions in Sumatran rainforests. J Zool. 2011;284(3):224-9. https://doi.org/10.1111/j.1469-7998.2011.00801.x.
  37. Lund U, Claudio A, Hiroyoshi A, Alessando G, Portugues EG, Giunchi D, Irisson JO, Pocernich M, Rotolo F. Circular statistics. R package version 0.4-93. 2017 Available from: https://cran.r-project.org/package=circular.
  38. Massara RL, Paschoal A Maria DO, Bailey LL, Doherty PF Jr, MDF B, Chiarello AG. Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mamm Biol. 2018;92:86-93. https://doi.org/10.1016/j.mambio.2018.04.009
  39. Meredith M, Ridout M. Estimates of coefficient of overlapping for animal activity patterns. Available from: R package version 0.3.2. 2018. https://cran.r-project.org/web/packages/overlap/index.html.
  40. MoE. ECOREA, An Environmental Review 2011.
  41. Niedballa J, Sollmann R, Courtiol A, Wilting A. camtrapR: an R package for efficient camera trap data management. Methods Ecol Evol. 2016;7(12):1457-62. https://doi.org/10.1111/2041-210X.12600.
  42. O'Brien TG, Kinnaird MF, Wibisono HT. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv. 2003;6(2):131-9. https://doi.org/10.1017/S1367943003003172.
  43. Obidzinski A, Kieltyk P, Borkowski J, Bolibok L, Remuszko K. Autumn-winter diet overlap of fallow, red, and roe deer in forest ecosystems, Southern Poland. Cent Eur J Biol. 2013;8(1):8-17.
  44. Oh H, Park S, Adhikari P, Kim Y, Kim T-W, Han S-H. Distribution and status of the alien invasive red-eared slider (Trachemys scripta elegans) in Jeju Island, South Korea. Korean J Environ Biol. 2017;35(1):57-63. https://doi.org/10.11626/KJEB.2017.35.1.057.
  45. Pagon N, Grignolio S, Pipia A, Bongi P, Bertolucci C, Apollonio M. Seasonal variation of activity patterns in roe deer in a temperate forested area. Chronobiol Int. 2013;30(6):772-85. https://doi.org/10.3109/07420528.2013.765887.
  46. Palmer MS, Swanson A, Kosmala M, Arnold T, Packer C. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr J Ecol. 2018;56(4):791-803. https://doi.org/10.1111/aje.12566.
  47. Paul B, Mccullough DR. Factor influencing white-tailed deer activity patterns and habitat use. Wildl Monogr. 1990;(109):3-51.
  48. Peksa L, Ciach M. Daytime activity budget of an alpine ungulate (Tatra chamois Rupicapra rupicapra tatrica): influence of herd size, sex, weather and human disturbance. Mammal Res. 2018;63(4):443-53. https://doi.org/10.1007/s13364-018-0376-y.
  49. Pianka ER. Niche overlap and diffuse competition. Proc Natl Acad Sci USA. 1974; 71(5):2141-5. https://doi.org/10.1073/pnas.71.5.2141.
  50. Prpic AM, Gancevic P, Safner T, Kavcic K, Jerina K, Nikica S. Activity patterns of aoudad (Ammotragus lervia) in a Mediterranean habitat. J Vertebr Biol. 2020; 69(4):20055.
  51. Putman RJ. Competition and resource partitioning in temperate ungulate assemblies. Vol. 3. Springer Science and Business Media; 1996.
  52. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2015.
  53. Ridout MS, Linkie M. Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat. 2009;14(3):322-37. https://doi.org/10.1198/jabes.2009.08038.
  54. Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA. Quantifying levels of animal activity using camera trap data. Methods Ecol Evol. 2014;5(11):1170-9. https://doi.org/10.1111/2041-210X.12278.
  55. Russell M, Woodall CW, Potter KM, Walters BF, Domke GM, Oswalt CM. Interactions between white-tailed deer density and the composition of forest understories in the northern United States. For Ecol Manag. 2017;384:26-33. https://doi.org/10.1016/j.foreco.2016.10.038.
  56. Sidell BP. Moonrise 3.5; 2002. Available from http://moonrise.us/moonrise.html
  57. Signer C, Ruf T, Arnold W. Hypometabolism and basking: The strategies of Alpine ibex to endure harsh over-wintering conditions. Funct Ecol. 2011;25(3):537-47. https://doi.org/10.1111/j.1365-2435.2010.01806.x.
  58. Spear D, Chown SL. Non-indigenous ungulates as a threat to biodiversity. J Zool. 2009;279(1):1-17. https://doi.org/10.1111/j.1469-7998.2009.00604.x.
  59. Stache A, Heller E, Hothorn T, Heurich M. Activity patterns of European roe deer (capreolus capreolus) are strongly influenced by individual behaviour. Folia Zool. 2013;62(1):67-75. https://doi.org/10.25225/fozo.v62.i1.a10.2013.
  60. Takatsuki S. Geographical variations in food habits of sika deer: the northern grazer vs . the southern browser. In: McCullough DR, Kaji K, Takatsuki S, editors. Sika deer. Biology and management of native and introduced populations. Berlin Heidelberg New York 5: Springer; 2009.
  61. Turbill C, Ruf T, Mang T, Arnold W. Regulation of heart rate and rumen temperature in red deer: Effects of season and food intake. J Exp Biol. 2011; 214(6):963-70. https://doi.org/10.1242/jeb.052282.
  62. Turner DC. An analysis of time-budgeting by roe deer (Capreolus capreolus) in an agricultural area. Behaviour. 1979;71(3):246-90. https://doi.org/10.1163/156853979X00188.
  63. Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989;70(1):164-8. https://doi.org/10.2307/1938423.
  64. Yokoyama M, Kaji K, Suzuki M. Food habits of sika deer and nutritional value of sika deer diets in eastern Hokkaido, Japan. Ecol Res. 2000;15(3):345-55. https://doi.org/10.1046/j.1440-1703.2000.00355.x.