DOI QR코드

DOI QR Code

Subjective and Objective Assessment of Monoenergetic and Polyenergetic Images Acquired by Dual-Energy CT in Breast Cancer

  • Xiaoxia Wang (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Daihong Liu (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Shixi Jiang (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Xiangfei Zeng (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Lan Li (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Tao Yu (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital) ;
  • Jiuquan Zhang (Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital)
  • Received : 2020.01.14
  • Accepted : 2020.09.27
  • Published : 2021.04.01

Abstract

Objective: To objectively and subjectively assess and compare the characteristics of monoenergetic images [MEI (+)] and polyenergetic images (PEI) acquired by dual-energy CT (DECT) of patients with breast cancer. Materials and Methods: This retrospective study evaluated the images and data of 42 patients with breast cancer who had undergone dual-phase contrast-enhanced DECT from June to September 2019. One standard PEI, five MEI (+) in 10-kiloelectron volt (keV) intervals (range, 40-80 keV), iodine density (ID) maps, iodine overlay images, and Z effective (Zeff) maps were reconstructed. The contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) were calculated. Multiple quantitative parameters of the malignant breast lesions were compared between the arterial and the venous phase images. Two readers independently assessed lesion conspicuity and performed a morphology analysis. Results: Low keV MEI (+) at 40-50 keV showed increased CNR and SNRbreast lesion compared with PEI, especially in the venous phase ([CNR: 40 keV, 20.10; 50 keV, 14.45; vs. PEI, 7.27; p < 0.001], [SNRbreast lesion: 40 keV, 21.01; 50 keV, 16.28; vs. PEI, 10.77; p < 0.001]). Multiple quantitative DECT parameters of malignant breast lesions were higher in the venous phase images than in the arterial phase images (p < 0.001). MEI (+) at 40 keV, ID, and Zeff reconstructions yielded the highest Likert scores for lesion conspicuity. The conspicuity of the mass margin and the visual enhancement were significantly better in 40-keV MEI (+) than in the PEI (p = 0.022, p = 0.033, respectively). Conclusion: Compared with PEI, MEI (+) reconstructions at low keV in the venous phase acquired by DECT improved the objective and subjective assessment of lesion conspicuity in patients with malignant breast lesions. MEI (+) reconstruction acquired by DECT may be helpful for the preoperative evaluation of breast cancer.

Keywords

Acknowledgement

The authors thank all volunteers who participated in the study and the staff of the Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital in Chongqing, China, for their selfless and valuable assistance.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424
  2. Shimauchi A, Yamada T, Sato A, Takase K, Usami S, Ishida T, et al. Comparison of MDCT and MRI for evaluating the intraductal component of breast cancer. AJR Am J Roentgenol 2006;187:322-329
  3. Brown JC, Kontos D, Schnall MD, Wu S, Schmitz KH. The dose-response effects of aerobic exercise on body composition and breast tissue among women at high risk for breast cancer: a randomized trial. Cancer Prev Res (Phila) 2016;9:581-588
  4. Casiraghi M, De Pas T, Maisonneuve P, Brambilla D, Ciprandi B, Galetta D, et al. A 10-year single-center experience on 708 lung metastasectomies: the evidence of the "international registry of lung metastases". J Thorac Oncol 2011;6:1373-1378
  5. Mahner S, Schirrmacher S, Brenner W, Jenicke L, Habermann CR, Avril N, et al. Comparison between positron emission tomography using 2-[fluorine-18]fluoro-2-deoxy-D-glucose, conventional imaging and computed tomography for staging of breast cancer. Ann Oncol 2008;19:1249-1254
  6. Beer L, Toepker M, Ba-Ssalamah A, Schestak C, Dutschke A, Schindl M, et al. Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma. Eur Radiol 2019;29:3617-3625
  7. De Cecco CN, Caruso D, Schoepf UJ, De Santis D, Muscogiuri G, Albrecht MH, et al. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol 2018;28:3393-3404
  8. Okada K, Matsuda M, Tsuda T, Kido T, Murata A, Nishiyama H, et al. Dual-energy computed tomography for evaluation of breast cancer: value of virtual monoenergetic images reconstructed with a noise-reduced monoenergetic reconstruction algorithm. Jpn J Radiol 2020;38:154-164
  9. Metin Y, Metin NO, Ozdemir O, Tas,ci F, Kul S. The role of low keV virtual monochromatic imaging in increasing the conspicuity of primary breast cancer in dual-energy spectral thoracic CT examination for staging purposes. Acta Radiol 2020;61:168-174
  10. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, et al. Material separation using dual-energy CT: current and emerging applications. Radiographics 2016;36:1087-1105
  11. Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 2017;8:589-598
  12. Xu X, Sui X, Zhong W, Xu Y, Wang Z, Jiang J, et al. Clinical utility of quantitative dual-energy CT iodine maps and CT morphological features in distinguishing small-cell from non-small-cell lung cancer. Clin Radiol 2019;74:268-277
  13. Yang Y, Li K, Sun D, Yu J, Cai Z, Cao Y, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as pure ground-glass nodules: differentiation using enhanced dual-source dual-energy CT. AJR Am J Roentgenol 2019;213:W114-W122
  14. Fehrenbach U, Feldhaus F, Kahn J, Boning G, Maurer MH, Renz D, et al. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy - Can spectral CT predict recurrence? J Med Imaging Radiat Oncol 2019;63:641-649
  15. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013;24:2206-2223
  16. Tashima R, Nishimura R, Osako T, Nishiyama Y, Okumura Y, Nakano M, et al. Evaluation of an optimal cut-off point for the Ki-67 index as a prognostic factor in primary breast cancer: a retrospective study. PLoS One 2015;10:e0119565
  17. El Kayal N, Lennartz S, Ekdawi S, Holz J, Slebocki K, Haneder S, et al. Value of spectral detector computed tomography for assessment of pancreatic lesions. Eur J Radiol 2019;118:215-222
  18. Lennartz S, Laukamp KR, Neuhaus V, Grosse Hokamp N, Le Blanc M, Maus V, et al. Dual-layer detector CT of the head: initial experience in visualization of intracranial hemorrhage and hypodense brain lesions using virtual monoenergetic images. Eur J Radiol 2018;108:177-183
  19. Zhang X, Zheng C, Yang Z, Cheng Z, Deng H, Chen M, et al. Axillary sentinel lymph nodes in breast cancer: quantitative evaluation at dual-energy CT. Radiology 2018;289:337-346
  20. Lin YP, Hsu HH, Ko KH, Chu CM, Chou YC, Chang WC, et al. Differentiation of malignant and benign incidental breast lesions detected by chest multidetector-row computed tomography: added value of quantitative enhancement analysis. PLoS One 2016;11:e0154569
  21. Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE. BI-RADS® fifth edition: a summary of changes. Diagn Interv Imaging 2017;98:179-190
  22. Bellini D, Gupta S, Ramirez-Giraldo JC, Fu W, Stinnett SS, Patel B, et al. Use of a noise optimized monoenergetic algorithm for patient-size independent selection of an optimal energy level during dual-energy CT of the pancreas. J Comput Assist Tomogr 2017;41:39-47
  23. Simons D, Kachelriess M, Schlemmer HP. Recent developments of dual-energy CT in oncology. Eur Radiol 2014;24:930-939
  24. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517
  25. Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology 2014;271:327-342
  26. Cai W, Kim SH, Lee JG, Yoshida H. Informatics in radiology: dual-energy electronic cleansing for fecal-tagging CT colonography. Radiographics 2013;33:891-912
  27. Nunes LW, Englander SA, Charafeddine R, Schnall MD. Optimal post-contrast timing of breast MR image acquisition for architectural feature analysis. J Magn Reson Imaging 2002;16:42-50
  28. Bhimani C, Matta D, Roth RG, Liao L, Tinney E, Brill K, et al. Contrast-enhanced spectral mammography: technique, indications, and clinical applications. Acad Radiol 2017;24:84-88
  29. Zopfs D, Laukamp KR, Pinto Dos Santos D, Sokolowski M, Grosse Hokamp N, Maintz D, et al. Low-keV virtual monoenergetic imaging reconstructions of excretory phase spectral dual-energy CT in patients with urothelial carcinoma: a feasibility study. Eur J Radiol 2019;116:135-143
  30. Okada K, Matsuda M, Tsuda T, Kido T, Murata A, Nishiyama H, et al. Dual-energy computed tomography for evaluation of breast cancer: value of virtual monoenergetic images reconstructed with a noise-reduced monoenergetic reconstruction algorithm. Jpn J Radiol 2020;38:154-164
  31. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015;276:637-653
  32. Lin WC, Hsu HH, Li CS, Yu JC, Hsu GC, Yu CP, et al. Incidentally detected enhancing breast lesions on chest computed tomography. Korean J Radiol 2011;12:44-51
  33. Moyle P, Sonoda L, Britton P, Sinnatamby R. Incidental breast lesions detected on CT: what is their significance? Br J Radiol 2010;83:233-240
  34. Yao Y, Nagasawa A, Kakegawa A, Kato M, Kaisaki S, Sakatani T. An attempt to evaluate intraductal components of breast cancer by dual energy computed tomography. Imaging Med 2018;10:103-110