DOI QR코드

DOI QR Code

COEFFICIENT BOUNDS FOR p-VALENTLY CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap (Faculty of Aviation and Space Sciences, Kocaeli University)
  • Received : 2021.03.19
  • Accepted : 2021.05.07
  • Published : 2021.06.30

Abstract

By considering a certain univalent function that maps the unit disk 𝕌 onto a strip domain, we introduce new subclasses of analytic and p-valent functions and determine the coefficient bounds for functions belonging to these new classes. Relevant connections of some of the results obtained with those in earlier works are also provided.

Keywords

References

  1. S. Bulut, Coefficient bounds for certain subclasses of close-to-convex functions of complex order, Filomat 31 (20) (2017), 6401-6408. https://doi.org/10.2298/FIL1720401B
  2. S. Bulut, Coefficient bounds for close-to-convex functions associated with vertical strip domain, Commun. Korean Math. Soc. 35 (3) (2020), 789-797. https://doi.org/10.4134/CKMS.C190268
  3. S. Bulut, M. Hussain and A. Ghafoor, On coefficient bounds of some new subfamilies of close-to-convex functions of complex order related to generalized differential operator, Asian-Eur. J. Math. 13 (3) (2020), 2050049, 8 pp.
  4. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185 (1953).
  5. R. Kargar, A. Ebadian and J. Sokol, Some properties of analytic functions related with bounded positive real part, Int. J. Nonlinear Anal. Appl. 8 (1) (2017), 235-244.
  6. K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku 1772 (2011), 21-25.
  7. R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158. https://doi.org/10.1215/S0012-7094-64-03114-X
  8. V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szego inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2004), 171-180.
  9. M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3(1) (1955), 59-62. https://doi.org/10.1307/mmj/1031710535
  10. M.S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (2) (1936), 374-408. https://doi.org/10.2307/1968451
  11. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48 (1943), 48-82.
  12. H.M. Srivastava, O. Altinta,s and S. Kirci Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011), 1359-1363. https://doi.org/10.1016/j.aml.2011.03.010
  13. H.M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23 (2010), 763-768. https://doi.org/10.1016/j.aml.2010.03.005
  14. W. Ul-Haq, A. Nazneen and N. Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat 28 (6) (2014), 1139-1142. https://doi.org/10.2298/FIL1406139U
  15. W. Ul-Haq, A. Nazneen, M. Arif and N. Rehman, Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl. 16 (1) (2014), 133-138.
  16. B.A. Uralegaddi, M.D. Ganigi and S.M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225-230. https://doi.org/10.5556/j.tkjm.25.1994.4448