DOI QR코드

DOI QR Code

SYMMETRIC BI-DERIVATIONS OF SUBTRACTION ALGEBRAS

  • Kim, Kyung Ho (Department of Mathematics, Korea National University of Transportation)
  • Received : 2021.04.23
  • Accepted : 2021.05.06
  • Published : 2021.06.30

Abstract

In this paper, we introduce the notion of symmetric bi-derivations on subtraction algebra and investigated some related properties. We prove that a map D : X × X → X is a symmetric bi-derivation on X if and only if D is a symmetric map and it satisfies D(x - y, z) = D(x, z) - y for all x, y, z ∈ X.

Keywords

References

  1. J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
  2. S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2) (2013), 165-171.
  3. K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2) (2010), 127-132.
  4. B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169. https://doi.org/10.1080/00927879208824453
  5. Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and statistics, 41 (2) (2012), 157-168
  6. B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447. https://doi.org/10.21136/MB.1995.126093