References
- ACI 224R-01 (2001), Control of Cracking in Concrete Structures, American Concrete Institute, U.S.A.
- ACI 350-06 (2006), Code Requirements for Environmental Engineering Concrete Structures and Commentary, American Concrete Institute, U.S.A.
- ACI 350.3-06 (2006), Seismic Design of Liquid-Containing Concrete Structures and Commentary, American Concrete Institute, U.S.A.
- American Lifelines Alliance (2001), Seismic Fragility Formulations for Water Systems: Guideline, American Lifelines Alliance, U.S.A.
- ANSYS Inc. (2017), Documentation for Release 18.2.
- ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures: Second Printing, American Society of Civil Engineers, U.S.A.
- Broms, B., B. and Lutz, L., A. (1965), "Effects of arrangement of reinforcement on crack width and spacing of reinforced concrete members", ACI Journal Proceedings, 62(11). https://doi.org/10.14359/7752.
- Chen, W.F. (2007), Plasticity in Reinforced Concrete, J. Ross Pub., Cambridge, Massachusetts, U.S.A.
- Chen, W.F. and Han, D.J. (2007), Plasticity for Structural Engineers, J. Ross Pub., Cambridge, Massachusetts, U.S.A.
- Chopra, A.K. (2014), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Pearson Education Limited, Harlow, Essex, United Kingdom.
- Coffman, J.L. and Cloud, W.K. (1984), "United States Earthquakes, 1968", US Geological Survey, 84.
- Concrete Engineering Series 82 (2008), Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Japan Society of Civil Engineers, Concrete Committee, Japan.
- Desayi, P. and Krishnan, S. (1964), "Equation for the stress-strain curve of concrete", ACI J. Proceedings, 61(3). https://doi.org/10.14359/7785.
- Douheret, G., Davis, M.I., Reis, J.C.R. and Blandamer, M.J. (2001), "Isentropic compressibilities-experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures", ChemPhysChem, 2(3), 148-161. https://doi.org/10.1002/1439-7641(20010316)2:3<148::AIDCPHC148>3.0.CO;2-J.
- Eldeeb, M.M., Metwally, K.G. and Akl, A.Y. (2016), "Investigating the efficiency of using the carbon fiber polymer on beam-column connection", Beni-Suef Univ. J. Basic Appl. Sci., 5(1), 31-44. https://doi.org/10.1016/j.bjbas.2016.01.002.
- Galzerano, M.B., Bressan, L.T., Cecche Lintz, R.C., Jaquie Ribeiro, L.C.L., Pires, M.S.G., Jacintho, A.E.P. and GachetBarbosa, L.A. (2013), "Application of self-compacting concrete (SCC) in the execution of reservoir of water", Advan. Mater. Res., 756(1), 121-123. https://doi.org/10.4028/www.scientific.net/AMR.756-759.121.
- Ghaemmaghami, A. and Kianoush, M. (2010), "Effect of wall flexibility on dynamic response of concrete rectangular liquid storage tanks under horizontal and vertical ground motions", J. Struct. Eng., 136(4), 441-451. https://doi.org/10.1061/(asce)st.1943-541x.0000123.
- Hajimehrabi, H., Behnamfar, F., Kabiri Samani, A. and Goudarzi, M.A. (2019), "Fragility curves for baffled concrete cylindrical liquid-storage tanks", Soil Dyn. Earthq. Eng., 119 187-195. https://doi.org/10.1016/j.soildyn.2019.01.015.
- Hanson, R.D. (1973), "Behavior of liquid-storage tanks, the Great Alaska Earthquake of 1964", Proceedings of the National Academy of Science, Washington, D.C.
- Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Amer., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381
- Izzuddin, B.A. and Elnashai, A.S. (1993), "Adaptive space frame analysis. Part II: a distributed plasticity approach", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 99(3), 317-326. https://doi.org/10.1680/istbu.1993.24353.
- Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beamcolumns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(asce)0733-9445(1994)120:10(2913).
- Jacobsen, L.S. and Ayre, R.S. (1951), "Hydrodynamic experiments with rigid cylindrical tanks subjected to transient motions", Bull. Seismol. Soc. Amer., 41(4), 313-346. https://doi.org/10.1785/BSSA0410040313
- Karayannis, C.G., Izzuddin, B.A. and Elnashai, A.S. (1994), "Application of adaptive analysis to reinforced concrete frames", J. Environ. Eng., 120(10), 2935-2957. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935).
- Kenawy, M., Kunnath, S., Kolwankar, S. and Kanvinde, A. (2018), "Fiber-based nonlocal formulation for simulating softening in reinforced concrete beam-columns", J. Struct. Eng., 144(12), 04018217. https://doi.org/10.1061/(asce)st.1943-541x.0002218.
- Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
- Keoleian, G.A., Kendall, A., Dettling, J.E., Smith, V.M., Chandler, R.F., Lepech, M.D. and Li, V.C. (2005), "Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints", J. Infrastruct. Syst., 11(1), 51-60. https://doi.org/10.1061/(ASCE)1076-0342(2005)11:1(51).
- Kh, H.M., Ozakca, M. and Ekmekyapar, T. (2016), "Numerical and parametric studies on flexural behaviour of ECC beams by considering the effect of slag and Micro-PVA fibre", J. Advan. Res. Appl.Mech., 21 1-21.
- Kuebitz, K.C. and Bloomer, T. (2012), "Repairing and retrofitting prestressed concrete water tanks in seismic areas. In Alexander, Concrete Repair, Rehabilitation and Retrofitting III, CRC Press.
- Kwon, Y.H. (2011), "Optimum mix proportion of the high strength and self compacting concrete used above-ground LNG storage tank", J. Korea Concrete Institute, 23(1), 99-107. https://doi.org/10.4334/jkci.2011.23.1.099.
- Kytinou, V.K., Chalioris, C.E., Karayannis, C.G. and Elenas, A. (2020), "Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-tests and analysis", Mater. (Basel), 13(13), 2923. https://doi.org/10.3390/ma13132923.
- Lepech, M.D. and Li, V.C. (2008), "Large-scale processing of engineered cementitious composites", ACI Mater. J., 105(4), 358. https://doi.org/10.14359/19897.
- Lepech, M.D. and Li, V.C. (2009), "Water permeability of engineered cementitious composites", Cement Concrete Compos., 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002.
- Li, V.C. (2008), Engineered Cementitious Composites (ECC) Material, Structural, and Durability Performance.
- Ma, D., Gvildys, J., Chang, Y. and Liu, W.K. (1982), "Seismic behavior of liquid-filled shells", Nuclear Eng. Des., 70(3), 437-455. https://doi.org/10.1016/0029-5493(82)90160-1.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Environ. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1804).
- Meng, D., Huang, T., Zhang, Y. and Lee, C. (2017), "Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients", Construct. Build. Mater., 141, 259-270. https://doi.org/10.1016/j.conbuildmat.2017.02.158.
- Montava, I., Irles, R., Segura, J., Gadea, J.M. and Julia, E. (2019), "Numerical simulation of steel reinforced concrete (SRC) joints", Metals, 9(2), 131. https://doi.org/10.3390/met902013.
- Moradi, R., Behnamfar, F. and Hashemi, S. (2018), "Mechanical model for cylindrical flexible concrete tanks undergoing lateral excitation", Soil Dyn. Earthq. Eng., 106 148-162. https://doi.org/10.1016/j.soildyn.2017.12.008.
- Moslemi, M. and Kianoush, M. (2012), "Parametric study on dynamic behavior of cylindrical ground-supported tanks", Eng. Struct., 42, 214-230. https://doi.org/10.1016/j.engstruct.2012.04.026.
- Pacific Earthquake Engineering Research Center (2021), PEER Ground Motion Database, Berkeley, https://ngawest2.berkeley.edu.
- Parkus, H. (1982), "Modes and frequencies of vibrating liquidfilled cylindrical tanks", Int. J. Eng. Sci., 20(2), 319-326. https://doi.org/10.1016/0020-7225(82)90028-3.
- Pu, X., Palermo, A., Cheng, Z., Shi, Z. and Marzani, A. (2020), "Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves", Int. J. Eng. Sci., 154, 103347. https://doi.org/10.1016/j.ijengsci.2020.103347.
- Rashed, A., Elwi, A. and Rogowsky, D.M. (2002), "Reinforced, partially prestressed concrete water tank walls", Struct. J., 99(3), 288-298. https://doi.org/10.14359/11912.
- Ru-deng, L. (2008), "Values of shear transfer coefficients of concrete element Solid65 in Ansys", J. Jiangsu Univ., 29(2), 169-172. https://doi.org/10.3969/j.issn.1671-7775.2008.02.019.
- Sadjadi, R. (2009), "Response of Reinforced Concrete Rectangular Liquid Containing Structures Under Cyclic Loading", Ph.D. Dissertation, Ryerson University, Toronto, Canada.
- Sameer, R., Mundhada, A. and Metkar, S. (2012), "Comparison of RCC and prestressed concrete circular water tanks", Int. J. Emerging Technol. Advan. Eng., 2(12), 394-397.
- Scott, B.D. (1980), "Stress: Strain Relationships for Confined Concrete: Rectangular sections", M.Sc. Thesis, University of Canterbury, New Zealand.
- Seleemah Ayman, A. and El-Sharkawy, M. (2011), "Seismic analysis and modeling of isolated elevated liquid storage tanks", Earthq. Struct., 2(4), 397-412. https://doi.org/10.12989/EAS.2011.2.4.397.
- Shahrjerdi, A. and Bayat, M. (2018), "The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I", Earthq. Struct., 15(5), 513-528. http://dx.doi.org/10.12989/eas.2018.15.5.513.
- Sheikh, S.A. and Uzumeri, S.M. (1982), "Analytical model for concrete confinement in tied columns", J. Struct. Div., 108(12), 2703-2722. https://doi.org/10.1061/JSDEAG.0006100.
- Shin, K.J., Jang, K.H., Choi, Y.C. and Lee, S.C. (2015), "Flexural behavior of HPFRCC members with inhomogeneous material properties", Mater., 8(4), 1934-1950. https://doi.org/10.3390/ma8041934.
- Si, B., Sun, Z., Ai, Q., Wang, D. and Wang, Q. (2008), "Experiments and simulation of flexural-shear dominated RC bridge piers under reversed cyclic loading", The 14th World Conference on Earthquake Engineering Proceedings, Beijing, China.
- Tanaka, H. (1990), "Effect of Lateral Confining Reinforcement on the Ductile Behaviour of Reinforced Concrete Columns", Ph.D. Dissertation, University of Canterbury, New Zealand.
- Tsonos, A. (2009a), "Steel fiber high-strength reinforced concrete: A new solution for earthquake strengthening of old R/C structures", Earthq. Resistant Eng. Struct. VII, 104, 153-164. https://doi.org/10.2495/eres090141.
- Tsonos, A.G. (2009), "Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Trans. Eng. Sci., 64, 273-284. https://doi.org/10.2495/MC090261
- Weimann, M.B. (2003), "Drying shrinkage and crack width of engineered cementitious composites (ECC)", In Brittle Matrix Composites 7, 37-46. Woodhead Publishing.
- Yazdabad, M., Behnamfar, F. and Kabiri Samani, A. (2018), "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending", Earthq. Struct., 14(2), 95-102. http://dx.doi.org/10.12989/eas.2018.14.2.095.
- Yong, Y.K., Nour, M.G. and Nawy, E.G. (1988), "Behavior of laterally confined high-strength concrete under axial loads", J. Eng. Mech., 114(2), 332-351. https://doi.org/10.1061/(asce)07339445(1988)114:2(332).
- Yuan, F., Pan, J. and Leung, C.K.Y. (2013), "Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer", J. Compos. Construct., 17(5), 591-602. https://doi.org/10.1061/(asce)cc.1943-5614.0000381.