DOI QR코드

DOI QR Code

정형외과 영역에서의 삼차원 프린팅의 응용

Three-Dimensional Printing Technology in Orthopedic Surgery

  • 최승원 (화순전남대학교병원 관절센터 정형외과) ;
  • 박경순 (화순전남대학교병원 관절센터 정형외과) ;
  • 윤택림 (화순전남대학교병원 관절센터 정형외과)
  • Choi, Seung-Won (Department of Orthopedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital) ;
  • Park, Kyung-Soon (Department of Orthopedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital) ;
  • Yoon, Taek-Rim (Department of Orthopedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital)
  • 투고 : 2020.08.10
  • 심사 : 2020.11.09
  • 발행 : 2021.04.30

초록

삼차원(three-dimensional, 3D) 프린팅의 사용은 점차 보편화되고 있으며 정형외과 영역에서도 그 활용이 늘어나고 있다. 현재 정형외과에서 3D 프린팅 기술을 사용하는 방법은 크게 네 가지로 첫째, 3D 프린팅 모델을 이용한 수술 계획 수립 및 수술 시뮬레이션, 둘째, 환자 맞춤형 수술 기구, 셋째, 3D 적층 기법을 이용한 인공 삽입물의 생산, 넷째, 3D 프린팅으로 제작된 환자 맞춤형 삽입물이다. 3D 프린팅 기술을 사용할 수 있는 정형외과의 영역은 견관절, 척추, 고관절 및 골반, 슬관절, 족관절, 종양 분야 등으로, 각각의 영역마다 다루는 질환 및 특성이 다르기 때문에 3D 프린팅 기술을 사용하는 방법 역시 각각의 영역에 따라 약간의 차이가 있다. 하지만 모든 영역에서 3D 프린팅 기술을 이용하는 것은 수술의 효율을 높여 주고, 수술 시간을 단축시키며 수술 중 방사선 노출을 줄여 준다. 3D 프린팅 기술은 특히 복잡하고 어려운 질환이나 골절 환자의 치료에 큰 도움을 줄 수 있다. 따라서 정형외과 의사는 이러한 3D 프린팅 기술의 장점을 이해하고 임상에 최대한 적용하여 효율적인 환자의 치료가 이루어질 수 있도록 해야 한다.

The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

키워드

참고문헌

  1. Global Market Insights, Inc. Healthcare 3D printing market 2018 prominent players - Aprecia Pharmaceuticals, Aspect Biosystems, Bio 3D Technologies, BioBots, Cyfuse Biomedical, Digilab, 3Dynamics Systems, Envision TEC, Luxexcel, Materialise NV, Nano3D Biosciences, Oceanz, Organovo Ho [Internet]. Hannover: openPR; 2018 Aug 3 [cited 2020 Aug 10]. Available from: https://www.openpr.com/news/1160692/healthcare-3d-printing-market-2018-prominent-players-aprecia-pharmaceuticals-aspect-biosystemsbio-3d-technologies-biobots-cyfuse-biomedical-digilab-3dynamics-systems-envision-tec-luxexcel-materialise-nvnano3d-biosciences-oceanz-organovo-ho.html.
  2. Xia RZ, Zhai ZJ, Chang YY, Li HW. Clinical applications of 3-dimensional printing technology in hip joint. Orthop Surg. 2019;11:533-44. https://doi.org/10.1111/os.12468
  3. You W, Liu LJ, Chen HX, et al. Application of 3D printing technology on the treatment of complex proximal humeral fractures (Neer3-part and 4-part) in old people. Orthop Traumatol Surg Res. 2016;102:897-903. https://doi.org/10.1016/j.otsr.2016.06.009
  4. Kong L, Yang G, Yu J, et al. Surgical treatment of intra-articular distal radius fractures with the assistance of three-dimensional printing technique. Medicine (Baltimore). 2020;99:e19259. https://doi.org/10.1097/md.0000000000019259
  5. Zheng W, Su J, Cai L, et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res. 2018;104:83-8. https://doi.org/10.1016/j.otsr.2017.11.012
  6. Belien H, Biesmans H, Steenwerckx A, Bijnens E, Dierickx C. Prebending of osteosynthesis plate using 3D printed models to treat symptomatic os acromiale and acromial fracture. J Exp Orthop. 2017;4:34. https://doi.org/10.1186/s40634-017-0111-7
  7. Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am. 2011;93:2249-54. https://doi.org/10.2106/JBJS.J.01994
  8. Lubbeke A, Rees JL, Barea C, Combescure C, Carr AJ, Silman AJ. International variation in shoulder arthroplasty. Acta Orthop. 2017;88:592-9. https://doi.org/10.1080/17453674.2017.1368884
  9. Oppermann J, Celik E, Bredow J, et al. Shoulder arthroplasty in Germany: 2005-2012. Arch Orthop Trauma Surg. 2016;136:723-9. https://doi.org/10.1007/s00402-016-2417-9
  10. Bohsali KI, Bois AJ, Wirth MA. Complications of shoulder arthroplasty. J Bone Joint Surg Am. 2017;99:256-69. https://doi.org/10.2106/JBJS.16.00935
  11. Hsu JE, Hackett DJ Jr, Vo KV, Matsen FA 3rd. What can be learned from an analysis of 215 glenoid component failures? J Shoulder Elbow Surg. 2018;27:478-86. https://doi.org/10.1016/j.jse.2017.09.029
  12. Suero EM, Citak M, Lo D, Krych AJ, Craig EV, Pearle AD. Use of a custom alignment guide to improve glenoid component position in total shoulder arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21:2860-6. https://doi.org/10.1007/s00167-012-2177-1
  13. Iannotti JP, Frangiamore SJ. Fate of large structural allograft for treatment of severe uncontained glenoid bone deficiency. J Shoulder Elbow Surg. 2012;21:765-71. https://doi.org/10.1016/j.jse.2011.08.069
  14. Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty. 1999;14:756-60. https://doi.org/10.1016/S0883-5403(99)90232-2
  15. Iannotti JP, Jun BJ, Patterson TE, Ricchetti ET. Quantitative measurement of osseous pathology in advanced glenohumeral osteoarthritis. J Bone Joint Surg Am. 2017;99:1460-8. https://doi.org/10.2106/JBJS.16.00869
  16. Gregory T, Hansen U, Emery R, et al. Total shoulder arthroplasty does not correct the orientation of the eroded glenoid. Acta Orthop. 2012;83:529-35. https://doi.org/10.3109/17453674.2012.733916
  17. Gregory TM, Sankey A, Augereau B, et al. Accuracy of glenoid component placement in total shoulder arthroplasty and its effect on clinical and radiological outcome in a retrospective, longitudinal, monocentric open study. PLoS One. 2013;8:e75791. https://doi.org/10.1371/journal.pone.0075791
  18. Iannotti J, Baker J, Rodriguez E, et al. Three-dimensional preoperative planning software and a novel information transfer technology improve glenoid component positioning. J Bone Joint Surg Am. 2014;96:e71. https://doi.org/10.2106/JBJS.L.01346
  19. Gauci MO, Boileau P, Baba M, Chaoui J, Walch G. Patient-specific glenoid guides provide accuracy and reproducibility in total shoulder arthroplasty. Bone Joint J. 2016;98-B:1080-5. https://doi.org/10.1302/0301-620X.98B8.37257
  20. Dallalana RJ, McMahon RA, East B, Geraghty L. Accuracy of patient-specific instrumentation in anatomic and reverse total shoulder arthroplasty. Int J Shoulder Surg. 2016;10:59-66. https://doi.org/10.4103/0973-6042.180717
  21. Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017;3:433-43. https://doi.org/10.21037/jss.2017.09.01
  22. Shin JH. The effect of 3D printing techniques in shortening of the learning curve in lumbar pedicle screw insertion [thesis]. Chuncheon: Hallym University; 2016.
  23. Wang YT, Yang XJ, Yan B, Zeng TH, Qiu YY, Chen SJ. Clinical application of three-dimensional printing in the personalized treatment of complex spinal disorders. Chin J Traumatol. 2016;19:31-4. https://doi.org/10.1016/j.cjtee.2015.09.009
  24. Garg B, Mehta N. Current status of 3D printing in spine surgery. J Clin Orthop Trauma. 2018;9:218-25. https://doi.org/10.1016/j.jcot.2018.08.006
  25. Deng T, Jiang M, Lei Q, Cai L, Chen L. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. Comput Assist Surg (Abingdon). 2016;21:143-9. https://doi.org/10.1080/24699322.2016.1236146
  26. Chen PC, Chang CC, Chen HT, et al. The accuracy of 3D printing assistance in the spinal deformity surgery. Biomed Res Int. 2019;2019:7196528.
  27. Garg B, Gupta M, Singh M, Kalyanasundaram D. Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: a comparative study. Spine J. 2019;19:56-64. https://doi.org/10.1016/j.spinee.2018.05.001
  28. Luo M, Wang W, Yang N, Xia L. Does three-dimensional printing plus pedicle guider technology in severe congenital scoliosis facilitate accurate and efficient pedicle screw placement? Clin Orthop Relat Res. 2019;477:1904-12. https://doi.org/10.1097/CORR.0000000000000739
  29. Mobbs RJ, Parr WCH, Choy WJ, McEvoy A, Walsh WR, Phan K. Anterior lumbar interbody fusion using a personalized approach: is custom the future of implants for anterior lumbar interbody fusion surgery? World Neurosurg. Published online January 8, 2019; doi:10.1016/j.wneu.2018.12.144.
  30. Woo SH, Sung MJ, Park KS, Yoon TR. Three-dimensional-printing technology in hip and pelvic surgery: current landscape. Hip Pelvis. 2020;32:1-10. https://doi.org/10.5371/hp.2020.32.1.1
  31. Zheng SN, Yao QQ, Mao FY, et al. Application of 3D printing rapid prototyping-assisted percutaneous fixation in the treatment of intertrochanteric fracture. Exp Ther Med. 2017;14:3644-50. https://doi.org/10.3892/etm.2017.4991
  32. Chen K, Yang F, Yao S, et al. Application of computer-assisted virtual surgical procedures and three-dimensional printing of patient-specific pre-contoured plates in bicolumnar acetabular fracture fixation. Orthop Traumatol Surg Res. 2019;105:877-84. https://doi.org/10.1016/j.otsr.2019.05.011
  33. Verma T, Mishra A, Agarwal G, Maini L. Application of three dimensional printing in surgery for cam type of femoro-acetabular impingement. J Clin Orthop Trauma. 2018;9:241-6. https://doi.org/10.1016/j.jcot.2018.07.011
  34. Li B, Lei P, Liu H, et al. Clinical value of 3D printing guide plate in core decompression plus porous bioceramics rod placement for the treatment of early osteonecrosis of the femoral head. J Orthop Surg Res. 2018;13:130. https://doi.org/10.1186/s13018-018-0812-3
  35. Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stockl B. Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component. J Bone Joint Surg Br. 2005;87:762-9.
  36. Henckel J, Holme TJ, Radford W, Skinner JA, Hart AJ. 3D-printed patient-specific guides for hip arthroplasty. J Am Acad Orthop Surg. 2018;26:e342-8. https://doi.org/10.5435/jaaos-d-16-00719
  37. Small T, Krebs V, Molloy R, Bryan J, Klika AK, Barsoum WK. Comparison of acetabular shell position using patient specific instruments vs. standard surgical instruments: a randomized clinical trial. J Arthroplasty. 2014;29:1030-7. https://doi.org/10.1016/j.arth.2013.10.006
  38. Castagnini F, Bordini B, Stea S, Calderoni PP, Masetti C, Busanelli L. Highly porous titanium cup in cementless total hip arthroplasty: registry results at eight years. Int Orthop. 2019;43:1815-21. https://doi.org/10.1007/s00264-018-4102-9
  39. Arabnejad S, Johnston B, Tanzer M, Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 2017;35:1774-83. https://doi.org/10.1002/jor.23445
  40. Yang JC, Chen CF, Luo CA, et al. Clinical experience using a 3D-printed patient-specific instrument for medial opening wedge high tibial osteotomy. Biomed Res Int. 2018;2018:9246529. https://doi.org/10.1155/2018/9246529
  41. Kim HJ, Park J, Shin JY, Park IH, Park KH, Kyung HS. More accurate correction can be obtained using a three-dimensional printed model in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2018;26:3452-8. https://doi.org/10.1007/s00167-018-4927-1
  42. Lombardi AV Jr, Berend KR, Adams JB. Patient-specific approach in total knee arthroplasty. Orthopedics. 2008;31:927-30. https://doi.org/10.3928/01477447-20080901-21
  43. Seon JK, Park HW, Yoo SH, Song EK. Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24:3678-83. https://doi.org/10.1007/s00167-014-3429-z
  44. Stone AH, Sibia US, MacDonald JH. Functional outcomes and accuracy of patient-specific instruments for total knee arthroplasty. Surg Innov. 2018;25:470-5. https://doi.org/10.1177/1553350618787074
  45. Szczech B, McDermott JD, Issa K, et al. Patient-specific instrumentation in total knee arthroplasty: what is the evidence? J Knee Surg. 2016;29:341-5. https://doi.org/10.1055/s-0035-1558859
  46. Tetreault MW, Perry KI, Pagnano MW, Hanssen AD, Abdel MP. Excellent two-year survivorship of 3D-printed metaphyseal cones in revision total knee arthroplasty. Bone Joint J. 2020;102-B(6_Supple_A):107-15. https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1544.R1
  47. Vakhshori V, Sabour AF, Alluri RK, Hatch GF 3rd, Tan EW. Patient and practice trends in total ankle replacement and tibiotalar arthrodesis in the United States from 2007 to 2013. J Am Acad Orthop Surg. 2019;27:e77-84. https://doi.org/10.5435/jaaos-d-17-00526
  48. Punyaratabandhu T, Liacouras PC, Pairojboriboon S. Using 3D models in orthopedic oncology: presenting personalized advantages in surgical planning and intraoperative outcomes. 3D Print Med. 2018;4:12. https://doi.org/10.1186/s41205-018-0035-6
  49. Park JW, Kang HG, Lim KM, Park DW, Kim JH, Kim HS. Bone tumor resection guide using three-dimensional printing for limb salvage surgery. J Surg Oncol. 2018;118:898-905. https://doi.org/10.1002/jso.25236
  50. Lu Y, Chen G, Long Z, et al. Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection. J Bone Oncol. 2019;16:100220. https://doi.org/10.1016/j.jbo.2019.100220
  51. Lu M, Wang J, Tang F, et al. A three-dimensional printed porous implant combined with bone grafting following curettage of a subchondral giant cell tumour of the proximal tibia: a case report. BMC Surg. 2019;19:29. https://doi.org/10.1186/s12893-019-0491-y
  52. Bradish CF, Kemp HB, Scales JT, Wilson JN. Distal femoral replacement by custom-made prostheses. Clinical follow-up and survivorship analysis. J Bone Joint Surg Br. 1987;69:276-84.
  53. Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:33-45. https://doi.org/10.4137/CMAMD.S20354
  54. Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91:1882-9. https://doi.org/10.2106/JBJS.H.01199
  55. Slover JD, Rubash HE, Malchau H, Bosco JA. Cost-effectiveness analysis of custom total knee cutting blocks. J Arthroplasty. 2012;27:180-5. https://doi.org/10.1016/j.arth.2011.04.023
  56. Harrysson OL, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord. 2007;8:91. https://doi.org/10.1186/1471-2474-8-91
  57. Kersten RF, van Gaalen SM, de Gast A, Oner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2015;15:1446-60. https://doi.org/10.1016/j.spinee.2013.08.030
  58. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57-66.