DOI QR코드

DOI QR Code

A Study on the Compatibility of Nanocellulose-LDPE Composite

나노셀룰로오스-LDPE 복합체의 제조에 있어서 상용성에 대한 연구

  • Cho, Eun Hyeong (Department of Chemical Engineering, Hankyong National University) ;
  • Kim, Young Ho (Department of Chemical Engineering, Hankyong National University)
  • 조은형 (국립한경대학교 화학공학과) ;
  • 김영호 (국립한경대학교 화학공학과)
  • Received : 2021.04.21
  • Accepted : 2021.05.18
  • Published : 2021.06.30

Abstract

As declarations of carbon neutrality are spreading throughout the world, much research is being conducted on biodegradable polymers. In this study, nanocellulose, which comprises the largest amount of natural polymer currently available in the world, was proposed as a substitute for non-biodegradable polymers. We chose to modify the surface functional group of crystalline nanocellulose using glycidoxypropyl trimethoxysilane (GPTMS), which is a silane coupling agent, and the product was then used to form a film with low density polyethylene (LDPE). We then conducted measurements using a Fourier transform infrared spectrophotometer (FT-IR) in addition to measuring hydrophilic/lipophilicity of the surface functional group modification of crystalline nitrocellulose as well as that of a polymer composite using the hybrid nanocellulose (H-NC). For compatibility with petroleum-based polymers, the best tensile strength and transparency was found when the H-NC was reacted at pH 14 and 1 wt% compared with LDPE. From the test results, we found that it is possible to modify the surface functional groups of nanocellulose using a silane coupling agent. In addition, the high compatibility of nanocellulose with petroleum-based polymers is expected to help in reaching carbon neutrality by reducing the use of fossil fuels.

국제정치와 세계경제의 이슈가 되고 있는 '탄소중립'에 대한 선언이 전 세계적으로 이어지면서, 석유 기반 고분자를 생분해가 가능한 천연고분자로의 대체 연구가 활발히 진행되고 있다. 본 연구에서는 천연고분자 중에서도 세계에서 가장 많은 양을 차지하고 있는 나노셀룰로오스를 대체재로 제안하였다. 실란커플링제인 Glycidoxypropyl Trimethoxysilane (GPTMS)를 이용한 결정형 나노셀룰로오스의 표면작용기개질반응으로 하이브리드 나노셀룰로오스(hybrid nanocellulose, HNC)를 제조하였고, 저밀도폴리에틸렌(low density polyethylene, LDPE)과 함께 필름을 형성하였다. 친수성인 결정형나노셀룰로오스의 표면작용기개질반응을 확인하기 위해 소수성으로 바뀌는 것을 푸리에 변환 적외선 분광분석(fourier transform infrared spectrophotometer, FT-IR)과 친수/친유화도를 측정하였으며, 하이브리드 나노셀룰로오스를 적용한 고분자 복합체의 물성 확인을 위해 친수/친유화도, 인장강도, 투명도를 확인하였다. 석유기반 고분자와의 상용성은 pH 14에서 반응한 HNC가 LDPE 대비 1 wt%일 때, 인장강도와 투명도가 가장 우수하며, 결과적으로 실란커플링제를 이용한 나노셀룰로오스의 표면작용기개질이 가능하고 석유 기반 고분자와의 높은 상용성으로 인해 탄소중립을 위한 화석연료의 사용량을 줄일 수 있을 것으로 기대된다.

Keywords

References

  1. Olah, G. A., Goeppert, A., and Prakash, G. K. S., "Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: from Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons," J. Org. Chem., 74(2), 487-498 (2009). https://doi.org/10.1021/jo801260f
  2. Ching, Y. C., Rahman, A., Ching, K. Y., Sukiman, N. L., and Cheng, H. C., "Preparation and Characterization of Polyvinyl Alcohol-Based Composite Reinforced with Nanocellulose and Nanosilica," BioRes., 10(2), 3364-3377 (2015).
  3. Li, W., Wu, Q., Zhao, X., Huang, Z., Cao, J., Li, J., and Liu, S., "Enhanced Thermal and Mechanical Properties of PVA Composites Formed with Filamentous Nanocellulose Fibrils," Carbohydr. Polym., 113, 403-410 (2014). https://doi.org/10.1016/j.carbpol.2014.07.031
  4. Field, C. B., Campbell, J. E., and Lobell, D. B., "Biomass Energy: the Scale of the Potential Resource," Trends Ecol. Evol., 23(2), 65-72 (2008). https://doi.org/10.1016/j.tree.2007.12.001
  5. Ching, Y. C., and Ng, T. S., "Effect of Preparation Conditions on Cellulose from Oil Palm Empty Fruit Bunch Fiber," BioRes., 9(4), 6373-6385 (2014). https://doi.org/10.15376/biores.9.4.6373-6385
  6. Cho, M. J., and Park, B.-D., "Tensile and Thermal Properties of Nanocellulose-Reinforced Poly (Vinyl Alcohol) Nanocomposites," J. Ind. Eng. Chem., 17(1), 36-40, (2011). https://doi.org/10.1016/j.jiec.2010.10.006
  7. Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., and Liou, N.-S., "Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber," Materials, 9(8), 644 (2016). https://doi.org/10.3390/ma9080644
  8. Sirvio, J. A., Honkaniemi, S., Visanko, M., and Liimatainen, H., "Composite Films of Poly (Vinyl Alcohol) and Bifunctional Cross-Linking Cellulose Nanocrystals," ACS Appl. Mater. Interfaces, 7(35), 19691-19699 (2015). https://doi.org/10.1021/acsami.5b04879
  9. Moon, R. J., Martini, A., Nairn, J., and Youngblood, J., "Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites," Chem. Soc. Rev., 40(7), 3941-3994 (2011). https://doi.org/10.1039/c0cs00108b
  10. Nogi, M., Iwamoto, S., Nakagaito, A. N., and Yano, H., "Optically Transparent Nanofiber Paper," Adv. Mater, 21(16), 1595-1598 (2009). https://doi.org/10.1002/adma.200803174
  11. Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., and Dufresne, A., "Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Manocomposites," Eur. Polym. J., 44(8), 2489-2498 (2008). https://doi.org/10.1016/j.eurpolymj.2008.05.024
  12. Khalil, H. P. S. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudech, K., Dungani, R., and Jawaid, M., "Production and Modification of Nanofibrillated Cellulose Using Aarious Mechanical Processes: a Review," Carbohydr. Polym., 99, 649-665 (2014). https://doi.org/10.1016/j.carbpol.2013.08.069
  13. Habibi, Y., Lucia, L. A., and Rohas, O. J., "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications," Chem. Rev., 110(6), 3479-3500 (2010). https://doi.org/10.1021/cr900339w
  14. Stevanic, J. S., Joly, C., Mikkonen, K. S., Pirkkalainenm K., Serimaa, R., Remond, C., Toriz, G., Gatenholm, P., Tenkanen, M., and Salmen, L., "Bacterial Nanocellulose-Reinforced Arabinoxylan Films," J. Appl. Polym. Sci., 122(2), 1030-1039 (2011). https://doi.org/10.1002/app.34217
  15. Missoum, K., Belgacern, M. N., and Bras, J., "Nanofibrillated Cellulose Surface Modification: a Review," Materials, 6(5), 1745-1766 (2013). https://doi.org/10.3390/ma6051745
  16. Oksman, K., Aitomaki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., and Hooshmand, S., "Review of the Recent Developments in Cellulose Nanocomposite Processing," Composites, Part A, 83, 2-18 (2016). https://doi.org/10.1016/j.compositesa.2015.10.041
  17. John, M. J., and Thomas, S., "Biofibres and Biocomposites," Carbohydr. Polym., 71(3), 343-364 (2008). https://doi.org/10.1016/j.carbpol.2007.05.040
  18. Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Heux, L., and Isogai, A., "Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions," Biomacromolecules, 10(7), 1992-1996 (2009). https://doi.org/10.1021/bm900414t
  19. Abraham, E., Deepa, B., Pothan, L. A., Jacob, M., Thomas, S., Cvelbar, U., and Anandjiwala, R., "Extraction of Nanocellulose Fibrils from Lignocellulosic Fibres: A Novel Approach," Carbohydr. Polym., 86(4), 1468-1475 (2011). https://doi.org/10.1016/j.carbpol.2011.06.034
  20. Ashori, A., Sheykhnazari, S., Tabarsa, T., Shakeri, A., and Golalipour, M., "Bacterial Cellulose/Silica Nanocomposites: Preparation and Characterization," Carbohydr. Polym., 90(1), 413-418 (2012). https://doi.org/10.1016/j.carbpol.2012.05.060
  21. Latthe, S. S., Imai, H., Ganesan, V., Kappenstein, C., and Rao, A., "Optically Transparent Superhydrophobic TEOS-Derived Silica Films by Surface Silylation Method," J. Sol-Gel Sci. Technol., 53(2), 208-215 (2010). https://doi.org/10.1007/s10971-009-2079-y
  22. Naghsh, M., Sadeghi, M., Moheb, A., Chenar, M. P., and Mohagheghian, M., "Separation of Ethylene/ethane and Propylene/Propane by Cellulose Acetate-Silica Nanocomposite Membranes," J. Membr. Sci., 423, 97-106 (2012). https://doi.org/10.1016/j.memsci.2012.07.032
  23. Raabe, J., de Souza Fonseca, A., Bufalino, L., Ribeiro, C., Martins, M. A., Marconcini, J. M., and Tonoli, G. H. D., "Evaluation of Reaction Factors for Deposition of Silica (SiO2) Nanoparticles on Cellulose Fibers," Carbohydr. Polym., 114, 424-431 (2014). https://doi.org/10.1016/j.carbpol.2014.08.042
  24. Shi, J., Lu, L., Guo, W., Zhang, J., and Cao, Y., "Heat Insulation Performance, Mechanics and Hydrophobic Modification of Cellulose-SiO2 Composite Aerogels," Carbohydr. Polym., 98(1), 282-289 (2013). https://doi.org/10.1016/j.carbpol.2013.05.082
  25. Le, D., Kongparakul, S., Samart, C., Phanthong, P., Karnjanakom, S., Abudula, A., and Guan, G., "Preparing Hydrophobic Nanocellulose-Silica Film by a Facile One-Pot Method," Carbohydr. Polym., 153, 266-274 (2016). https://doi.org/10.1016/j.carbpol.2016.07.112
  26. Goncalves, G., Marques, P. A. A. P., Trindade, T., Neto, C. P., and Gandini, A., "Superhydrophobic Cellulose Nanocomposites," J. Colloid Interface Sci., 324(1-2), 42-46 (2008). https://doi.org/10.1016/j.jcis.2008.04.066
  27. Chaichi, M., Hashemi, M., Badii, F., and Mohammadi, A., "Preparation and Characterization of a Novel Bionanocomposite Edible Film Based on Pectin and Crystalline Nanocellulose," Carbohydr. Polym., 157, 167-175 (2017). https://doi.org/10.1016/j.carbpol.2016.09.062
  28. Samir, M. A. S. A., Alloin, F., Sanchez, J.-Y., and Dufresne, A., "Cellulose Nanocrystals Reinforced Poly (Oxyethylene)," Polymer, 45(12), 4149-4157 (2004). https://doi.org/10.1016/j.polymer.2004.03.094
  29. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., and Miraki, R., "Reducing Water Sensitivity of a Alginate Bio-Nanocomposite Film Using Cellulose Nanoparticles," Int. J. Biol. Macromol., 54, 166-173 (2013). https://doi.org/10.1016/j.ijbiomac.2012.12.016
  30. Agustin, M. B., Ahmmad, B., De Leon, E. R. P., Buenaobra, J. L., Salazar, J. R., and Hirose, F., "Starch-Based Biocomposite Films Reinforced with Cellulose Nanocrystals From Garlic Stalks," Polym. Compos., 34(8), 1325-1332 (2013). https://doi.org/10.1002/pc.22546
  31. Azeredo, H. M. C., Mattoso, L. H. C., Avena-Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., and McHugh, T. H., "Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content," J. Food Sci., 75(1), N1-N7 (2010). https://doi.org/10.1111/j.1750-3841.2009.01386.x
  32. Wan, Y., Luo, H., He, F., Liang, H., Huang, Y., and Li, X. L., "Mechanical, Moisture Absorption, and Biodegradation Behaviours of Bacterial Cellulose Fibre-Reinforced Starch Biocomposites," Compos. Sci. Technol., 69(7-8), 1212-1217 (2009). https://doi.org/10.1016/j.compscitech.2009.02.024
  33. Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L., and Cavaille, J. Y., "New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics," Biomacromolecules, 6(5), 2732-2739 (2005). https://doi.org/10.1021/bm050222v