DOI QR코드

DOI QR Code

Instability analysis of microfilaments with and without surface effects using Euler theory

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mahmood, Shaid (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Rashid, Yahya (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Naeem, M. Nawaz (Department of Mathematics, Govt. College University Faisalabad) ;
  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Ponnore, Joffin (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Al Qahtani, Abdelaziz (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Alwabli, Afaf S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.09.11
  • Accepted : 2021.02.16
  • Published : 2021.06.25

Abstract

The study of cell components has been an active area of research since the last few decades. Cytoskeleton of the cell which gives shape and provides structure to the cell has three main components, microtubules, microfilaments and intermediate filaments. Each of the cytoskeletal components is surrounded by various filamentous or the other cytoskeletal components act as a surface layer on these filaments. The stability of these components affected when cell perform various functions in the body and as a result these filaments buckle, vibrate and bend. In the present study the buckling behavior of microfilament is discussed with the effects of surface by using Euler Bernoulli beam theory and the obtained results for free and surrounded microfilament are shown in the tables and figures.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/17198.

References

  1. Akbas, S.D., Mercan, K. and Civalek, O. (2020), "Post-buckling analysis of aorta artery under axial compression loads", Adv. Nano Res., Int. J., 8(3), 255-264. https://doi.org/10.12989/anr.2020.8.3.255.
  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002), "Cell Movements and the Shaping of the Vertebrate Body", In: Molecular Biology of the Cell, 4th edition, Garland Science.
  3. Almor, J.M., Baulies, M.D., Urgell, J.D., Colet, J.C., Capdevila, M.C. and Cortada, J.B. (2004), "Prevalence and clinical course of patients in Spain with acute myocardial infarction and severely depressed ejection fraction who meet the criteria for automatic defibrillator implantation", Revista Espanola de Cardiologia (English Edition), 57(7), 705-708. http://doi.org/10.1016/S1885-5857(06)60297-1.
  4. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study" Comput. Concrete, Int. J., 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
  5. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel. Compos. Struct., Int. J., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603
  6. Bennett, V. and Baines, A.J. (2001), "Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues", Phys. Rev., 81(3), 1353-1392. http://doi.org/10.1152/physrev.2001.81.3.1353.
  7. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)," Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  8. Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E. and Weitz, D.A. (2006), "Microtubules can bear enhanced compressive loads in living cellsbecause of lateral reinforcement", J. Cell Biol., 173(5), 733-741. https://doi.org/10.1083/jcb.200601060.
  9. Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Prog. Surf. Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1.
  10. Carter, N.J. and Cross, R. (2005), "Mechanics of the kinesin step", Nature, 435(7040), 308-312. https://doi.org/10.1038/nature03528.
  11. Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces innanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.2356094.
  12. Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
  13. Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., Int. J., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
  14. Crowley, C.A., Curnutte, J.T., Rosin, R.E., Andre-Schwartz, J., Gallin, J.I., Klempner, M., Snyderman, R., Southwick, F.S., Stossel, T.P. and Babior, B.M. (1980) "An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein", New Engl. J. Med., 302(21), 1163-1168. https://doi.org/10.1056/NEJM198005223022102.
  15. Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., Int. J., 5(1), 35-47. http://doi.org/10.12989/anr.2017.5.1.035.
  16. Ebrahimi, F., Karimiasl, M., Civalek, O . and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. http://doi.org/10.12989/anr.2019.7.2.077.
  17. Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proceedings of the National Academy of Sciences, 70(9), 2687-2691. http://doi.org/10.1073/pnas.70.9.2687.
  18. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923.
  19. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  20. Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015), "The evolution of compositionally and functionally distinct actin filaments", J. Cell. Sci, 128(11), 2009-2019. http://doi.org/10.1242/jcs.165563.
  21. Gurtin, M., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.
  22. Hanukogle, I., Tanese, N. and Fuchs, E. (1983), "Complementary DNA sequence of a human cytoplasmic actin: Interspecies divergence of 3 non-coding regions", J. Molecular Biol., 163(4), 673-678. https://doi.org/10.1016/0022-2836(83)90117-1.
  23. He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano. Lett., 8(7), 1798- 1802. https://doi.org/10.1063/1.4748975.
  24. Jerusalem, A. and Dao, M. (2012), "Continuum modeling of a neuronal cell under blast loading", Acta Biomater., 8(9), 3360-3371. http://doi.org/10.1016/j.actbio.2012.04.039.
  25. Kamali, M., Shamsi, M. and Saidi, A.R. (2018), "Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model", Mech. Res. Commun., 92, 111-117. https://doi.org/10.1007/s00542-018-4072-2.
  26. Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
  27. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
  28. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. http://doi.org/10.12989/sss.2017.20.5.595
  29. Kikumoto, M., Kurachi, M., Tosa, V. and Tashiro, H. (2006), "Flexural rigidity of individual microtubules measured by a buckling force with optical traps", Biophys. J., 90(5), 1687-1696. https://doi.org/10.1529/biophys.
  30. Kreplak, L., Bar, H., Leterrier, J.F., Herrmann, H. and Aebi, U. (2005), "Exploring the mechanical behavior of single intermediate filaments", J. Mol. Biol., 354(3), 569-577. http://doi.org/10.1016/j.jmb.2005.09.092.
  31. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, Int. J., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  32. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, Int. J., 19(6), 677-687. http://doi.org/10.12989/cac.2017.19.6.677.
  33. Lundin, V.F., Leroux, M.R. and Stirling, P.C. (2010), "Quality control of cytoskeletal proteins and human disease", Trend. Biochem. Sci., 35(5), 288-297. https://doi.org/10.1016/j.tibs.2009.12.007.
  34. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech.-ASCE, 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  35. Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press. http://doi.org/10.1017/CBO9780511607318.
  36. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, Int. J., 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  37. Netter, F.H. (1989), Atlas of Human Anatomy, Ciba-Geigy Corporation.
  38. Noria, S., Xu, F., McCue, S., Jones, M., Gotlieb, A.I. and Langille, B.L. (2004), "Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress", Am. J. Pathol., 164(4), 1211-1223. https://doi.org/10.1371/journal.pone.0004853.
  39. Pan, X., Hobbs, R.P. and Coulombe, P.A. (2013), "The expanding significance of keratin intermediate filaments in normal and diseased epithelia", Curr. Opin. Cell Biol., 25(1), 47-56. http://doi.org/10.1016/j.ceb.2012.10.018.
  40. Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.
  41. Panda, S.K. and Singh, B.N. (2013a), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097.
  42. Panda, S.K. and Singh, B.N. (2013b), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM# ", Mech. Based Des. Struct., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
  43. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., Int. J., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  44. Pokorny, J., Jelinek, F., Trkal, V., Lamprecht, I. and Holzel, R. (1997), "Vibrations in microtubules", J. Biol. Phys., 23(3), 171-179. https://doi.org/10.1023/A.
  45. Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
  46. Raff, M., Alberts, B., Lewis, J., Johnson, A. and Roberts, K. (2002), Molecular Biology of the Cell, 4th edition, National Center for Biotechnology InformationO s Bookshelf.
  47. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.
  48. Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, Int. J., 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  49. Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nature, 422(6933), 759-765. http://doi.org/10.1016/j.cub.2007.04.025.
  50. Simons, C.T., Staes, A., Rommelaere, H., Ampe, C., Lewis, S.A. and Cowan, N.J. (2004), "Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding", J. Biol. Chem., 279(6), 4196-4203. https://doi.org/10.1074/jbc.M306053200.
  51. Sirenko, Y.M., Stroscio, M.A. and Kim, K.W. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.
  52. Stehn, J.R., Haass, N.K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., Zeng, J., Nascimento, P.R.B.B., Sequeira, V.B., Butler, T.L., Allanson, M., Fath, T., Hill, T.A., McCluskey, A., Schevzov, G., Palmer, S.J., Hardeman, E.C., Winlaw, D., Reeve, V.E., Dixon, I., Weninger, W., Cripe, T.P. and Gunning, P.W. (2013), "A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells", Cancer Res., 73(16), 5169-5182. http://doi.org/10.1158/0008-5472.
  53. Taj, M.S.M. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://doi.org/10.17576/jsm2019-4812-25.
  54. Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. http://doi.org/10.1016/j.jmbbm.2013.11.011.
  55. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, Int. J., 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.
  56. Takasone, T., Juodkazis, S., Kawagishi, Y., Yamaguchi, A., Matsuo, S., Sakakibara, H., Nakayama, H. and Misawa, H. (2002), "Flexural rigidity of a single microtubule", Jpn. J. Appl. Phys., 41(5R), 3015. http://doi.org/1347-4065/41/5R/3015. https://doi.org/10.1143/JJAP.41.3015
  57. Tuszynski, J.A., Luchko, T., Portet, S. and Dixon, J.M. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E, 17(1), 29-35. http://doi.org/10.1140/epje/i2004-10102-5.
  58. Van der Lebenskraft, G.D.L. "Biological science" redirects here. It is not to be confused with life science. For other uses, see Biology (disambiguation).
  59. Venier, P., Maggs, A.C., Carlier, M.F. and Pantaloni, D. (1994), "Analysis of microtubule rigidity using hydrodynamic flow and thermalfluctuations", J. Biol. Chem., 269(18), 13353-13360. http://doi.org/10.1529/biophysj.103.038877.
  60. Vindin, H. and Gunning, P. (2013), "Cytoskeletal tropomyosins: choreographers of actin filament functional diversity", J. Muscle Res. Cell M., 34(3-4), 261-274. http://doi.org/10.1007/978-0-387-84847-1_10.
  61. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, Int. J., 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  62. Zhao, X. and Rajapakse, R. (2009), "Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects", Int. J. Eng. Sci., 47(11-12), 1433-1444. http://doi.org/10.1016/j.ijengsci.2008.12.0131434X.