DOI QR코드

DOI QR Code

Semen evaluation: methodological advancements in sperm quality-specific fertility assessment - A review

  • Tanga, Bereket Molla (College of Veterinary Medicine, Chungnam National University) ;
  • Qamar, Ahmad Yar (College of Veterinary Medicine, Chungnam National University) ;
  • Raza, Sanan (Department of Clinical Sciences, College of Veterinary and Animal Sciences, Sub-campus University of Veterinary and Animal Sciences) ;
  • Bang, Seonggyu (College of Veterinary Medicine, Chungnam National University) ;
  • Fang, Xun (College of Veterinary Medicine, Chungnam National University) ;
  • Yoon, Kiyoung (Department of Companion Animal, Shingu College) ;
  • Cho, Jongki (College of Veterinary Medicine, Chungnam National University)
  • Received : 2021.02.16
  • Accepted : 2021.03.30
  • Published : 2021.08.01

Abstract

Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.

Keywords

Acknowledgement

We thank all the members of our laboratory for technical support and helpful discussions and the funding agency for their financial support.

References

  1. Shenk MK. Fertility and fecundity. In: Whelehan P, Bolin A editors. The international encyclopedia of human sexuality. Hoboken, NJ, USA: Wiley-Blackwell; 2015. pp. 369-426.
  2. Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol 1989;11:61-109.
  3. Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril 2014;102:1502-7. https://doi.org/10.1016/j.fertnstert.2014.10.021
  4. de Kretser DM, Baker HWG. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab 1999;84:3443-50. https://doi.org/10.1210/jcem.84.10.6101
  5. Binsila B, Selvaraju S, Somashekar L, et al. Molecular advances in semen quality assessment and improving fertility in bulls-a review. Indian J Anim Reprod 2018;39:1-10.
  6. Patel AS, Leong JY, Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab J Urol 2018;16:96-102. https://doi.org/10.1016/j.aju.2017.10.005
  7. Aitken RJ, Best FS, Richardson DW, Djahanbakhch O, Templeton A, Lees MM. An analysis of semen quality and sperm function in cases of oligozoospermia. Fertil Steril 1982;38: 705-11. https://doi.org/10.1016/S0015-0282(16)46698-7
  8. Lemack GE, Goldstein M. Presence of sperm in the prevasectomy reversal semen analysis: incidence and implications. J Urol 1996;155:167-9. https://doi.org/10.1016/S0022-5347(01)66584-4
  9. Menkveld R. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl 2010;12:47-58. https://doi.org/10.1038/aja.2009.14
  10. Hoflack G, Opsomer G, Rijsselaere T, et al. Comparison of computer-assisted sperm motility analysis parameters in semen from belgian blue and Holstein-Friesian bulls. Reprod Domest Anim 2007;42:153-61. https://doi.org/10.1111/j.1439-0531.2006.00745.x
  11. Veeramachaneni DN, Ott RS, Heath EH, McEntee K, Bolt DJ, Hixon JE. Pathophysiology of small testes in beef bulls: relationship between scrotal circumference, histopathologic features of testes and epididymides, seminal characteristics, and endocrine profiles. Am J Vet Res 1986;47:1988-99.
  12. Bruner KA, Van Camp SD. Assessment of the reproductive system of the male ruminant. Vet Clin North Am Food Anim Pract 1992;8:331-45. https://doi.org/10.1016/s0749-0720(15)30738-6
  13. Chenoweth PJ, McPherson FJ. Bull breeding soundness, semen evaluation and cattle productivity. Anim Reprod Sci 2016;169: 32-6. https://doi.org/10.1016/j.anireprosci.2016.03.001
  14. Jarow JP, Sharlip ID, Belker AM, et al. Best practice policies for male infertility. J Urol 2002;167:2138-44. https://doi.org/10.1016/S0022-5347(05)65109-9
  15. Brazil C, Swan SH, Drobnis EZ, et al. Standardized methods for semen evaluation in a multicenter research study. J Androl 2004;25:635-44. https://doi.org/10.1002/j.1939-4640.2004.tb02835.x
  16. Eo Y, Kim SH, Bang S-G, Oh MG, Park CH, Yoon JT. Effect of Extenders with TCG and DMSO on the Viability of Rabbit Sperm. J Anim Reprod Biotechnol 2019;34:100-5. https://doi.org/10.12750/JARB.34.2.100
  17. Rando OJ. Intergenerational transfer of epigenetic information in sperm. Cold Spring Harb Perspect Med 2016;6:a022988. https://doi.org/10.1101/cshperspect.a022988
  18. Hajjar C, Sampuda KM, Boyd L. Dual roles for ubiquitination in the processing of sperm organelles after fertilization. BMC Dev Biol 2014;14:6. https://doi.org/10.1186/1471-213X-14-6
  19. Barbagallo F, Vignera SL, Cannarella R, Aversa A, Calogero AE, Condorelli RA. Evaluation of sperm mitochondrial function: a key organelle for sperm motility. J Clin Med 2020;9: 363. https://doi.org/10.3390/jcm9020363
  20. Connor WE, Lin DS, Wolf DP, Alexander M. Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J Lipid Res 1998;39:1404-11. https://doi.org/10.1016/S0022-2275(20)32521-9
  21. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 1996;2:613-9. https://doi.org/10.1093/molehr/2.8.613
  22. Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci USA 2011;108:20008-11. https://doi.org/10.1073/pnas.1116965108
  23. DeJarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH, Sattler CG. Sustaining the fertility of artificially inseminated dairy cattle: the role of the artificial insemination industry. J Dairy Sci 2004;87:E93-E104. https://doi.org/10.3168/jds.S0022-0302(04)70065-X
  24. Diskin MG. Semen handling, time of insemination and insemination technique in cattle. Animal 2018;12:s75-s84. https://doi.org/10.1017/S1751731118000952
  25. Selvaraju S, Parthipan S, Somashekar L, et al. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst Biol Reprod Med 2018; 64:484-501. https://doi.org/10.1080/19396368.2018.1444816
  26. Karoui S, Diaz C, Serrano M, Cue R, Celorrio I, Carabano MJ. Time trends, environmental factors and genetic basis of semen traits collected in Holstein bulls under commercial conditions. Anim Reprod Sci 2011;124:28-38. https://doi.org/10.1016/j.anireprosci.2011.02.008
  27. Verstegen J, Iguer-Ouada M, Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 2002;57:149-79. https://doi.org/10.1016/S0093-691X(01)00664-1
  28. Yata VK, Gangwar DK, Sharma V, et al. Semen analysis and sperm characteristics of Karan Fries cattle. Anim Reprod Sci 2020;212:106250. https://doi.org/10.1016/j.anireprosci.2019.106250
  29. Nallella KP, Sharma RK, Aziz N, Agarwal A. Significance of sperm characteristics in the evaluation of male infertility. Fertil Steril 2006;85:629-34. https://doi.org/10.1016/j.fertnstert.2005.08.024
  30. Groen AF, Steine T, Colleau J-J, Pedersen J, Pribyl J, Reinsch N. Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest Prod Sci 1997;49:1-21. https://doi.org/10.1016/S0301-6226(97)00041-9
  31. Barbas JP, Mascarenhas RD. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank 2009;10:49-62. https://doi.org/10.1007/s10561-008-9081-4
  32. Mahmoud AM, Depoorter B, Piens N, Comhaire FH. The performance of 10 different methods for the estimation of sperm concentration. Fertil Steril 1997;68:340-5. https://doi.org/10.1016/S0015-0282(97)81526-9
  33. Kuster C. Sperm concentration determination between hemacytometric and CASA systems: why they can be different. Theriogenology 2005;64:614-7. https://doi.org/10.1016/j.theriogenology.2005.05.047
  34. Christensen P, Hansen C, Liboriussen T, Lehn-Jensen H. Implementation of flow cytometry for quality control in four Danish bull studs. Anim Reprod Sci 2005;85:201-8. https://doi.org/10.1016/j.anireprosci.2004.04.038
  35. Anzar M, Kroetsch T, Buhr MM. Comparison of different methods for assessment of sperm concentration and membrane integrity with bull semen. J Androl 2009;30:661-8. https://doi.org/10.2164/jandrol.108.007500
  36. Prathalingam NS, Holt WW, Revell SG, Jones S, Watson PF. The precision and accuracy of six different methods to determine sperm concentration. J Androl 2006;27:257-62. https://doi.org/10.2164/jandrol.05112
  37. Eggert-Kruse W, Schwarz H, Rohr G, Demirakca T, Tilgen W, Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. Hum Reprod 1996;11:139-46. https://doi.org/10.1093/oxfordjournals.humrep.a019007
  38. Eggert-Kruse W, Reimann-Andersen J, Rohr G, Pohl S, Tilgen W, Runnebaum B. Clinical relevance of sperm morphology assessment using strict criteria and relationship with spermmucus interaction in vivo and in vitro. Fertil Steril 1995;63: 612-24. https://doi.org/10.1016/S0015-0282(16)57435-4
  39. Gadea J. Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 2005;63:431-44. https://doi.org/10.1016/j.theriogenology.2004.09.023
  40. Donnelly ET, Lewis SE, McNally JA, Thompson W. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril 1998; 70:305-14. https://doi.org/10.1016/S0015-0282(98)00146-0
  41. Gago C, Perez-Sanchez F, Yeung C, et al. Morphological characterization of ejaculated cynomolgus monkey (Macaca fascicularis) sperm. Am J Primatol 1999;47:105-15. https://doi.org/10.1002/(SICI)1098-2345(1999)47:2<105::AID-AJP2>3.0.CO;2-L
  42. Rijsselaere T, Van Soom A, Hoflack G, Maes D, de Kruif A. Automated sperm morphometry and morphology analysis of canine semen by the Hamilton-Thorne analyser. Theriogenology 2004;62:1292-306. https://doi.org/10.1016/j.theriogenology.2004.01.005
  43. Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999;38:6994-7001. https://doi.org/10.1364/AO.38.006994
  44. Love CC. Modern techniques for semen evaluation. Vet Clin North Am Equine Pract 2016;32:531-46. https://doi.org/10.1016/j.cveq.2016.07.006
  45. Eskenazi B, Wyrobek AJ, Sloter E, et al. The association of age and semen quality in healthy men. Hum Reprod 2003;18: 447-54. https://doi.org/10.1093/humrep/deg107
  46. Yoshida M, Kawano N, Yoshida K. Control of sperm motility and fertility: diverse factors and common mechanisms. Cell Mol Life Sci 2008;65:3446-57. https://doi.org/10.1007/s00018-008-8230-z
  47. Ren D, Navarro B, Perez G, et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001;413:603-9. https://doi.org/10.1038/35098027
  48. David I, Kohnke P, Lagriffoul G, et al. Mass sperm motility is associated with fertility in sheep. Anim Reprod Sci 2015; 161:75-81. https://doi.org/10.1016/j.anireprosci.2015.08.006
  49. Shen S, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 2013;31:1395-401. https://doi.org/10.1007/s00345-013-1023-5
  50. Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci 2014;146:89-97. https://doi.org/10.1016/j.anireprosci.2014.01.012
  51. Iranpour FG, Nasr-Esfahani MH, Valojerdi MR, Al-Taraihi TMT. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet 2000;17:60-6. https://doi.org/10.1023/A:1009406231811
  52. Simon L, Lewis SEM. Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med 2011;57:133-8. https://doi.org/10.3109/19396368.2011.553984
  53. Cabrillana ME, Monclus MA, Lancellotti TES, et al. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa. Reprod Fertil Dev 2017;29:1435-46. https://doi.org/10.1071/rd16225
  54. Hardy MP, Dent JN. Regulation of motility in sperm of the red-spotted newt. J Exp Zool 1986;240:385-96. https://doi.org/10.1002/jez.1402400313
  55. Morisawa S, Mizuta T, Kubokawa K, Tanaka H, Morisawa M. Acrosome reaction in spermatozoa from the amphioxus acrosome reaction in Branchiostoma belcheri (Cephalochordata, Chordata). Zool Sci 2004;21:1079-84. https://doi.org/10.2108/zsj.21.1079
  56. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985;260:9699-705. https://doi.org/10.1016/S0021-9258(17)39295-5
  57. Hess KC, Jones BH, Marquez B, et al. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell 2005;9:249-59. https://doi.org/10.1016/j.devcel.2005.06.007
  58. Elbashir S, Magdi Y, Rashed A, et al. Relationship between sperm progressive motility and DNA integrity in fertile and infertile men. Middle East Fertil Soc J 2018;23:195-8. https://doi.org/10.1016/j.mefs.2017.12.002
  59. Brito LF. Evaluation of stallion sperm morphology. Clinical Techniques in Equine Practice 2007;6:249-64. https://doi.org/10.1053/j.ctep.2007.09.004
  60. Vantman D, Banks SM, Koukoulis G, Dennison L, Sherins RJ. Assessment of sperm motion characteristics from fertile and infertile men using a fully automated computer-assisted semen analyzer. Fertil Steril 1989;51:156-61. https://doi.org/10.1016/S0015-0282(16)60446-6
  61. Gunzel-Apel A, Gunther C, Terhaer P, Bader H. Computerassisted analysis of motility, velocity and linearity of dog spermatozoa. J Reprod Fertil Supplement 1993;47:271-8.
  62. van der Horst G. Computer Aided Sperm Analysis (CASA) in domestic animals: current status, three D tracking and flagellar analysis. Anim Reprod Sci 2020:106350. https://doi.org/10.1016/j.anireprosci.2020.106350
  63. Katz DF, Davis RO, Delandmeter BA, Overstreet JW. Realtime analysis of sperm motion using automatic video image digitization. Comput Methods Programs Biomed 1985;21: 173-82. https://doi.org/10.1016/0169-2607(85)90002-1
  64. Katz DF, Davis RO. Automatic analysis of human sperm motion. J Androl 1987;8:170-81. https://doi.org/10.1002/j.1939-4640.1987.tb02428.x
  65. Farrell P, Presicce G, Brockett C, Foote R. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 1998;49:871-9. https://doi.org/10.1016/S0093-691X(98)00036-3
  66. England G, Allen W. Factors affecting the viability of canine spermatozoa: II. Effects of seminal plasma and blood. Theriogenology 1992;37:373-81. https://doi.org/10.1016/0093-691X(92)90195-W
  67. Moruzzi JF, Wyrobek AJ, Mayall BH, Gledhill BL. Quantification and classification of human sperm morphology by computer-assisted image analysis. Fertil Steril 1988;50:142-52. https://doi.org/10.1016/S0015-0282(16)60022-5
  68. Gravance CG, Champion Z, Liu IK, Casey PJ. Sperm head morphometry analysis of ejaculate and dismount stallion semen samples. Anim Reprod Sci 1997;47:149-55. https://doi.org/10.1016/s0378-4320(96)01634-x
  69. Larsen L, Scheike T, Jensen TK, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Hum Reprod 2000;15:1562-7. https://doi.org/10.1093/humrep/15.7.1562
  70. Hirano Y, Shibahara H, Obara H, et al. Andrology: Relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro. J Assist Reprod Genet 2001;18:215-20. https://doi.org/10.1023/A:1009420432234
  71. Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown J, Smith D. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod 2019;34:1173-85. https://doi.org/10.1093/humrep/dez056
  72. Bartoov B, Ben-Barak J, Mayevsky A, et al. Sperm motility index: a new parameter for human sperm evaluation. Fertil Steril 1991;56:108-12. https://doi.org/10.1016/S0015-0282(16)54427-6
  73. Rijsselaere T, Van Soom A, Maes D, de Kruif A. Effect of centrifugation on in vitro survival of fresh diluted canine spermatozoa. Theriogenology 2002;57:1669-81. https://doi.org/10.1016/S0093-691X(02)00663-5
  74. Krause W, Viethen G. Quality assessment of computer-assisted semen analysis (CASA) in the andrology laboratory. Andrologia 1999;31:125-9. https://doi.org/10.1111/j.1439-0272.1999.tb01398.x
  75. Davis R, Katz D. Operational standards for CASA instruments. J Androl 1993;14:385-94. https://doi.org/10.1002/j.1939-4640.1993.tb00407.x
  76. Maes D, Mateusen B, Rijsselaere T, et al. Motility characteristics of boar spermatozoa after addition of prostaglandin F2α. Theriogenology 2003;60:1435-43. https://doi.org/10.1016/S0093-691X(03)00132-8
  77. Rijsselaere T, Van Soom A, Maes D, de Kruif A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 2003;60: 1553-68. https://doi.org/10.1016/S0093-691X(03)00171-7
  78. Nagy A, Polichronopoulos T, Gaspardy A, Solti L, Cseh S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet Hung 2015;63:370-81. https://doi.org/10.1556/004.2015.035
  79. Byrd W, Bradshaw K, Carr B, et al. A prospective randomized study of pregnancy rates following intrauterine and intracervical insemination using frozen donor sperm. Fertil Steril 1990;53:521-7. http://doi.org/doi.org/10.1016/S0015-0282(16)53351-2
  80. Krause W. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum Reprod 1995;10:60-6. https://doi.org/10.1093/humrep/10.suppl_1.60
  81. Soler C, Garcia-Molina A, Sancho M, et al. A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reprod Fertil Dev 2016;28:428-33. https://doi.org/10.1071/RD14087
  82. Gallagher MT, Smith D, Kirkman-Brown J. CASA: tracking the past and plotting the future. Reprod Fertil Dev 2018;30: 867-74. https://doi.org/10.1071/RD17420
  83. Stostad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy. Evol 2018;72:1918-32. https://doi.org/10.1111/evo.13555
  84. Maroto-Morales A, Garcia-Alvarez O, Ramon M, et al. Current status and potential of morphometric sperm analysis. Asian J Androl 2016;18:863. https://doi.org/10.4103/1008-682X.187581
  85. Budworth PR, Amann RP, Chapman PL. Relationships between computerized measurements of motion of frozen-thawed bull spermatozoa and fertility. J Androl 1988;9:41-54. https://doi.org/10.1002/j.1939-4640.1988.tb01007.x
  86. Samper J, Hellander J, Crabo B. Relationship between the fertility of fresh and frozen stallion semen and semen quality. J Reprod Fertil Supplement 1991;44:107.
  87. Santolaria P, Vicente-Fiel S, Palacin I, et al. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim Reprod Sci 2015;163:82-8. https://doi.org/10.1016/j.anireprosci.2015.10.001
  88. Viudes-de-Castro MP, Moce E, Vicente J, Marco-Jimenez F, Lavara R. In vitro evaluation of in vivo fertilizing ability of frozen rabbit semen. Reprod Domest Anim 2005;40:136-40. https://doi.org/10.1111/j.1439-0531.2005.00568.x
  89. Broekhuijse MLWJ, Sostaric E, Feitsma H, Gadella BM. Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci 2012;90:779-89. https://doi.org/10.2527/jas.2011-4311
  90. Tardif S, Laforest J-P, Cormier N, Bailey JL. The importance of porcine sperm parameters on fertility in vivo. Theriogenology 1999;52:447-59. https://doi.org/10.1016/S0093-691X(99)00142-9
  91. Gil MC, Garcia-Herreros M, Baron FJ, Aparicio IM, Santos AJ, Garcia-Marin LJ. Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen. Theriogenology 2009;71:254-63. https://doi.org/10.1016/j.theriogenology.2008.07.007
  92. Bompart D, Garcia-Molina A, Valverde A, et al. CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod Fertil Dev 2018;30:810-9. https://doi.org/10.1071/RD17551
  93. Amann RP, Katz DF. Andrology lab corner*: Reflections on casa after 25 years. J Androl 2004;25:317-25. https://doi.org/10.1002/j.1939-4640.2004.tb02793.x
  94. Holt C, Holt WV, Moore HDM. Choice of operating conditions to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. J Androl 1996;17:587-96. https://doi.org/10.1002/j.1939-4640.1996.tb01837.x
  95. Betancourt M, Resendiz A. Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro. Reprod Toxicol 2006;22:508-12. https://doi.org/10.1016/j.reprotox.2006.03.001
  96. Broekhuijse MLWJ, Sostaric E, Feitsma H, Gadella BM. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 2011;76:1473-86.e1. https://doi.org/10.1016/j.theriogenology.2011.05.040
  97. Tomlinson MJ. Uncertainty of measurement and clinical value of semen analysis: has standardisation through professional guidelines helped or hindered progress? Andrology 2016;4:763-70. https://doi.org/10.1111/andr.12209
  98. Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 2014;81:5-17.e3. https://doi.org/10.1016/j.theriogenology.2013.09.004
  99. Wakimoto Y, Fukui A, Kojima T, Hasegawa A, Shigeta M, Shibahara H. Application of computer-aided sperm analysis (CASA) for detecting sperm-immobilizing antibody. Am J Reprod Immunol 2018;79:e12814. https://doi.org/10.1111/aji.12814
  100. van der Horst G, Maree L, du Plessis Stefan S. Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod Fertil Dev 2018;30:875-88. https://doi.org/10.1071/RD17468
  101. De Andrade AFC, De Arruda RP, Celeghini ECC, et al. Fluorescent stain method for the simultaneous determination of mitochondrial potential and integrity of plasma and acrosomal membranes in boar sperm. Reprod Domest Anim 2007;42:190-4. https://doi.org/10.1111/j.1439-0531.2006.00751.x
  102. Rahman MM, Naher N, Isam MM, et al. Natural vs synchronized estrus: determinants of successful pregnancy in ewes using frozen-thawed Suffolk semen. J Anim Reprod Biotechnol 2020;35:183-9. https://doi.org/10.12750/JARB.35.2.183
  103. Rodriguez-Martinez H. Laboratory semen assessment and prediction of fertility: still utopia? Reprod Domest Anim 2003; 38:312-8. https://doi.org/10.1046/j.1439-0531.2003.00436.x
  104. Jha PK, Alam MGS, Mansur MAA, et al. Effects of number of frozen-thawed ram sperm and number of inseminations on fertility in synchronized ewes under field condition. J Anim Reprod Biotechnol 2020;35:190-7. https://doi.org/10.12750/JARB.35.2.190
  105. Kang SS, Kim UH, Lee MS, Lee SD, Cho SR. Spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 mL and 0.5 mL straw after frozen-thawing in Hanwoo bull. J Anim Reprod Biotechnol 2020;35:307-14. https://doi.org/10.12750/JARB.35.4.307
  106. Graham JK. Assessment of sperm quality: a flow cytometric approach. Anim Reprod Sci 2001;68:239-47. https://doi.org/10.1016/s0378-4320(01)00160-9
  107. Yaniz JL, Santolaria P, Marco-Aguado MA, Lopez-Gatius F. Use of image analysis to assess the plasma membrane integrity of ram spermatozoa in different diluents. Theriogenology 2008;70:192-8. https://doi.org/10.1016/j.theriogenology.2008.03.002
  108. Qamar AY, Fang X, Kim MJ, Cho J. Myoinositol supplementation of freezing medium improves the quality-related parameters of dog sperm. Animals (Basel) 2019;9:1038. https://doi.org/10.3390/ani9121038
  109. Mahiddine FY, Qamar AY, Kim MJ. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J Anim Reprod Biotechnol 2020;35:268-72. https://doi.org/10.12750/JARB.35.3.268
  110. Qamar AY, Fang X, Kim MJ, Cho J. Improved viability and fertility of frozen-thawed dog sperm using adipose-derived mesenchymal stem cells. Sci Rep 2020;10:7034. https://doi.org/10.1038/s41598-020-61803-8
  111. Qamar AY, Fang X, Kim MJ, Cho J. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel) 2019;9:865. https://doi.org/10.3390/ani9110865
  112. Garner DL, Pinkel D, Johnson LA, Pace MM. Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol Reprod 1986;34:127-38. https://doi.org/10.1095/biolreprod34.1.127
  113. Harrison RAP, Vickers SE. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. Reproduction 1990;88:343-52. https://doi.org/10.1530/jrf.0.0880343
  114. Pintado B, De La Fuente J, Roldan E. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J Reprod Fertil 2000;118:145-52. https://doi.org/10.1530/reprod/118.1.145
  115. Qamar AY, Fang X, Bang S, Kim MJ, Cho J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020;95:90-6. https://doi.org/10.1016/j.cryobiol.2020.05.015
  116. Garner DL, Johnson LA. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 1995;53:276-84. https://doi.org/10.1095/biolreprod53.2.276
  117. Alm K, Taponen J, Dahlbom M, Tuunainen E, Koskinen E, Andersson M. A novel automated fluorometric assay to evaluate sperm viability and fertility in dairy bulls. Theriogenology 2001;56:677-84. https://doi.org/10.1016/S0093-691X(01)00599-4
  118. Qamar AY, Fang X, Bang S, Shin ST, Cho J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim 2020;55:1163-71. https://doi.org/10.1111/rda.13758
  119. Schafer-Somi S, Aurich C. Use of a new computer-assisted sperm analyzer for the assessment of motility and viability of dog spermatozoa and evaluation of four different semen extenders for predilution. Anim Reprod Sci 2007;102:1-13. https://doi.org/10.1016/j.anireprosci.2005.03.019
  120. Hossain MS, Johannisson A, Wallgren M, Nagy S, Siqueira AP, Rodriguez-Martinez H. Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J Androl 2011;13:406-19. https://doi.org/10.1038/aja.2011.15
  121. Campbell R, Dott H, Glover T. Nigrosin eosin as a stain for differentiating live and dead spermatozoa. J Agric Sci 1956; 48:1-8. https://doi.org/10.1017/S002185960003029X
  122. Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse. Reproduction 1981;61: 25-35. https://doi.org/10.1530/jrf.0.0610025
  123. Buffone MG, Foster JA, Gerton GL. The role of the acrosomal matrix in fertilization. Int J Dev Biol 2008;52:511-22. https://doi.org/10.1387/ijdb.072532mb
  124. Rajabi-Toustani R, Akter QS, Almadaly EA, et al. Methodological improvement of fluorescein isothiocyanate peanut agglutinin (FITC-PNA) acrosomal integrity staining for frozenthawed Japanese Black bull spermatozoa. J Vet Med Sci 2019; 81:694-702. https://doi.org/10.1292/jvms.18-0560
  125. Cross NL, Meizel S. Minireview: methods for evaluating the acrosomal status of mammalian sperm. Biol Reprod 1989;41:635-41. https://doi.org/10.1095/biolreprod41.4.635
  126. Ahmad M, Nasrullah R, Riaz H, Sattar A, Ahmad N. Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J S Afr Vet Assoc 2014;85: a972. https://doi.org/10.4102/jsava.v85i1.972
  127. Cross NL, Watson SK. Assessing acrosomal status of bovine sperm using fluoresceinated lectins. Theriogenology 1994;42: 89-98. https://doi.org/10.1016/0093-691X(94)90665-6
  128. Mendoza C, Carreras A, Moos J, Tesarik J. Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using Pisum sativum agglutinin. Reproduction 1992;95:755-63. https://doi.org/10.1530/jrf.0.0950755
  129. Mortimer D, Curtis EF, Miller RG. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. Reproduction 1987;81:127-35. https://doi.org/10.1530/jrf.0.0810127
  130. Kishida K, Sakase M, Minami K, et al. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Black cattle. J Reprod Dev 2015;61:519-24. https://doi.org/10.1262/jrd.2015-073
  131. Amaral A, Lourenco B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction 2013;146:R163-R74. https://doi.org/10.1530/REP-13-0178
  132. Aitken RJ, Ryan AL, Baker MA, McLaughlin EA. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 2004;36:994-1010. https://doi.org/10.1016/j.freeradbiomed.2004.01.017
  133. Pena FJ, Rodriguez Martinez H, Tapia J, Ortega Ferrusola C, Gonzalez Fernandez L, Mcias Garcia B. Mitochondria in mammalian sperm physiology and pathology: a review. Reprod Domest Anim 2009;44:345-9. https://doi.org/10.1111/j.1439-0531.2008.01211.x
  134. Al-Rubeai M, Emery AN, Chalder S, Goldman MH. A flow cytometric study of hydrodynamic damage to mammalian cells. J Biotechnol 1993;31:161-77. https://doi.org/10.1016/0168-1656(93)90158-J
  135. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem 1982;30:279-80. https://doi.org/10.1177/30.3.6174566
  136. Kim D-S, Hwangbo Y, Cheong H-T, Park C-K. Effects of discontinuous percoll gradient containing alpha-linolenic acid on characteristics of frozen-thawed boar spermatozoa. J Anim Reprod Biotechnol 2020;35:58-64. https://doi.org/10.12750/JARB.35.1.58
  137. Garner DL, Thomas CA, Joerg HW, DeJarnette JM, Marshall CE. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 1997;57:1401-6. https://doi.org/10.1095/biolreprod57.6.1401
  138. Martinez-Pastor F, Mata-Campuzano M, Alvarez-Rodriguez M, Alvarez M, Anel L, De Paz P. Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 2010;45(Suppl 2):67-78. https://doi.org/10.1111/j.1439-0531.2010.01622.x
  139. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod 2004;19:2267-76. https://doi.org/10.1093/humrep/deh416
  140. Boe-Hansen G, Fortes MS, Satake N. Morphological defects, sperm DNA integrity, and protamination of bovine spermatozoa. Andrology 2018;6:627-33. https://doi.org/10.1111/andr.12486
  141. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online 2018;37:315-26. https://doi.org/10.1016/j.rbmo.2018.06.023
  142. De Ambrogi M, Spinaci M, Galeati G, Tamanini C. Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 2006;66:1994-2000. https://doi.org/10.1016/j.theriogenology.2006.05.017
  143. Koonjaenak S, Johannisson A, Pongpeng P, Wirojwuthikul S, Kunavongkrit A, Rodriguez-Martinez H. Seasonal variation in nuclear DNA integrity of frozen-thawed spermatozoa from Thai AI swamp buffaloes (Bubalus bubalis). J Vet Med Series A 2007;54:377-83. https://doi.org/10.1111/j.1439-0442.2007.00946.x
  144. Morrell JM, Johannisson A, Dalin A-M, Hammar L, Sandebert T, Rodriguez-Martinez H. Sperm morphology and chromatin integrity in Swedish warmblood stallions and their relationship to pregnancy rates. Acta Vet Scand 2008;50:2. https://doi.org/10.1186/1751-0147-50-2
  145. Giwercman A, Lindstedt L, Larsson M, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 2010;33:e221-e7. https://doi.org/10.1111/j.1365-2605.2009.00995.x
  146. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004;81:1289-95. https://doi.org/10.1016/j.fertnstert.2003.09.063
  147. Boe-Hansen GB, Christensen P, Vibjerg D, Nielsen MBF, Hedeboe AM. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 2008;69:728-36. https://doi.org/10.1016/j.theriogenology.2007.12.004
  148. Waterhouse K, Haugan T, Kommisrud E, et al. Sperm DNA damage is related to field fertility of semen from young Norwegian Red bulls. Reprod Fertil Dev 2006;18:781-8. https://doi.org/10.1071/RD06029
  149. Garcia-Macias V, De Paz P, Martinez-Pastor F, et al. DNA fragmentation assessment by flow cytometry and Sperm-Bos-Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm. Int J Androl 2007;30:88-98. https://doi.org/10.1111/j.1365-2605.2006.00723.x
  150. Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 2006;65:979-91. https://doi.org/10.1016/j.theriogenology.2005.09.011
  151. Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 2000;22:169-89. https://doi.org/10.1023/A:1009844109023
  152. Kazerooni T, Asadi N, Jadid L, et al. Evaluation of sperm's chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet 2009;26:591-6. https://doi.org/10.1007/s10815-009-9361-3
  153. Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol Hum Reprod 1996;2:139-44. https://doi.org/10.1093/molehr/2.3.139
  154. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol 2018;16:35-43. https://doi.org/10.1016/j.aju.2017.11.001
  155. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci 2019;12:4-18. https://doi.org/10.4103/jhrs.JHRS_150_18
  156. Raad G, Bakos HW, Bazzi M, et al. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress and mitochondrial activity: a prospective study. Andrology 2021 May 17 [Accepted]. https://doi.org/10.1111/andr.13038
  157. Agarwal A, Qiu E, Sharma R. Laboratory assessment of oxidative stress in semen. Arab J Urol 2018;16:77-86. http://doi.org/10.1016/j.aju.2017.11.008
  158. Fingerova H, Oborna I, Novotny J, et al. The measurement of reactive oxygen species in human neat semen and in suspended spermatozoa: a comparison. Reprod Biol Endocrinol 2009;7:118. http://doi.org/10.1186/1477-7827-7-118
  159. Novotny J, Oborna I, Brezinova J, et al. The occurrence of reactive oxygen species in the semen of males from infertile couples. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147:173-6. https://doi.org/10.5507/bp.2003.024
  160. Agarwal A, Bui AD. Oxidation-reduction potential as a new marker for oxidative stress: Correlation to male infertility. Investig Clin Urol 2017;58:385-99. http://doi.org/10.4111/icu.2017.58.6.385
  161. Agarwal A, Parekh N, Panner Selvam MK, et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J Mens Health 2019;37:296-312. http://doi.org/10.5534/wjmh.190055
  162. Hamilton T, Assumpcao M. Sperm DNA fragmentation: causes and identification. Zygote 2020;28:1-8. https://doi.org/10.1017/s0967199419000595
  163. Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012;58:211-7. https://doi.org/10.3109/19396368.2011.639844
  164. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HDM. Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. J Androl 2000;21:238-49.
  165. Caballero I, Vazquez JM, Mayor GM, et al. PSP-I/PSP-II spermadhesin exert a decapacitation effect on highly extended boar spermatozoa. Int J Androl 2009;32:505-13. https://doi.org/10.1111/j.1365-2605.2008.00887.x
  166. Piehler E, Petrunkina AM, Ekhlasi-Hundrieser M, Topfer-Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A 2006;69:1062-70. https://doi.org/10.1002/cyto.a.20338
  167. Kim E-J, Talha NAH, Jeon Y-B, Yu I-J. Effect of κ-Carrageenan on Sperm Quality in Cryopreservation of Canine Semen. J Anim Reprod Biotechnol 2019;34:57-63. https://doi.org/10.12750/JARB.34.1.57
  168. Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Posttranslational modifications in sperm proteome: the chemistry of proteome diversifications in the pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj 2016;1860: 1450-65. https://doi.org/10.1016/j.bbagen.2016.04.001
  169. Gillan L, Evans G, Maxwell WMC. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 2005;63:445-57. https://doi.org/10.1016/j.theriogenology.2004.09.024
  170. Garner DL, Johnson LA, Yue ST, Roth BL, Haugland RP. Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J Androl 1994;15: 620-9. https://doi.org/10.1002/j.1939-4640.1994.tb00510.x
  171. Dominguez-Rebolledo AE, Martinez-Pastor F, Fernandez-Santos MR, et al. Comparison of the TBARS assay and BODIPY C11 probes for assessing lipid peroxidation in red deer spermatozoa. Reprod Domest Anim 2010;45:e360-8. https://doi.org/10.1111/j.1439-0531.2009.01578.x
  172. Nagy S, Jansen J, Topper EK, Gadella BM. A triple-stain flow cytometric method to assess plasma-and acrosomemembrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod 2003;68:1828-35. https://doi.org/10.1095/biolreprod.102.011445
  173. Harper CV, Barratt CL, Publicover SJ, Kirkman-Brown JC. Kinetics of the progesterone-induced acrosome reaction and its relation to intracellular calcium responses in individual human spermatozoa. Biol Reprod 2006;75:933-9. https://doi.org/10.1095/biolreprod.106.054627
  174. Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol 2014;11:278-88. https://doi.org/10.1038/nrurol.2014.74
  175. Berry DP, Eivers B, Dunne G, McParland S. Genetics of bull semen characteristics in a multi-breed cattle population. Theriogenology 2019;123:202-8. https://doi.org/10.1016/j.theriogenology.2018.10.006
  176. Tesi M, Sabatini C, Vannozzi I, et al. Variables affecting semen quality and its relation to fertility in the dog: A retrospective study. Theriogenology 2018;118:34-9. https://doi.org/10.1016/j.theriogenology.2018.05.018
  177. Colenbrander B, Gadella B, Stout T. The predictive value of semen analysis in the evaluation of stallion fertility. Reprod Domest Anim 2003;38:305-11. https://doi.org/10.1046/j.1439-0531.2003.00451.x
  178. Rao M, Zhao X-L, Yang J, et al. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl 2015;17:668-75. https://doi.org/10.4103/1008-682X.146967
  179. Wang J, Wang J, Zhang H-R, et al. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality. Asian J Androl 2009;11:484-91. https://doi.org/10.1038/aja.2009.26
  180. Druart X, de Graaf S. Seminal plasma proteomes and sperm fertility. Anim Reprod Sci 2018;194:33-40. https://doi.org/10.1016/j.anireprosci.2018.04.061
  181. Viana AGA, Martins AMA, Pontes AH, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep 2018;8:16323. https://doi.org/10.1038/s41598-018-34152-w
  182. Brandon CI, Heusner GL, Caudle AB, Fayrer-Hosken RA. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 1999;52:863-73. https://doi.org/10.1016/S0093-691X(99)00178-8
  183. Killian GJ, Chapman DA, Rogowski LA. Fertility-associated proteins in Holstein bull seminal plasma. Biol Reprod 1993; 49:1202-7. https://doi.org/10.1095/biolreprod49.6.1202
  184. Harshan HM, Sankar S, Singh LP, et al. Identification of PDC-109-like protein (s) in buffalo seminal plasma. Anim Reprod Sci 2009;115:306-11. https://doi.org/10.1016/j.anireprosci.2008.11.007
  185. Wang YX, Wu Y, Chen HG, et al. Seminal plasma metabolome in relation to semen quality and urinary phthalate metabolites among Chinese adult men. Environ Int 2019;129: 354-63. https://doi.org/10.1016/j.envint.2019.05.043
  186. Kumar A, Kroetsch T, Blondin P, Anzar M. Fertility-associated metabolites in bull seminal plasma and blood serum: 1H nuclear magnetic resonance analysis. Mol Reprod Dev 2015; 82:123-31. https://doi.org/10.1002/mrd.22450
  187. Velho ALC, Menezes E, Dinh T, et al. Metabolomic markers of fertility in bull seminal plasma. PloS One 2018;13:e0195279. https://doi.org/10.1371/journal.pone.0195279
  188. Deepinder F, Chowdary HT, Agarwal A. Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn 2007;7:351-8. https://doi.org/10.1586/14737159.7.4.351
  189. Aguiar GFM, Batista BL, Rodrigues JL, et al. Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine class. J Dairy Sci 2012;95:7066-73. https://doi.org/10.3168/jds.2012-5515
  190. Bhat GK, Sea TL, Olatinwo MO, et al. Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl 2006;27:302-10. https://doi.org/10.2164/jandrol.05133
  191. Foster PMD. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl 2006;29:140-7. https://doi.org/10.1111/j.1365-2605.2005.00563.x
  192. Liu L, Bao H, Liu F, Zhang J, Shen H. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int 2012;42:78-83. https://doi.org/10.1016/j.envint.2011.04.005
  193. Wang Y-X, You L, Zeng Q, et al. Phthalate exposure and human semen quality: Results from an infertility clinic in China. Environ Res 2015;142:1-9. https://doi.org/10.1016/j.envres.2015.06.010
  194. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013;113:2309-42. https://doi.org/10.1021/cr3004295
  195. Min K-S, Byambaragchaa M, Kim H, Park M-H. Identification of sperm mRNA biomarkers associated with sex-determination in Korean native cows. J Anim Reprod Biotechnol 2019;34:111-6. https://doi.org/10.12750/JARB.34.2.111
  196. Jodar M, Soler-Ventura A, Oliva R, et al. Semen proteomics and male infertility. J Proteom 2017;162:125-34. https://doi.org/10.1016/j.jprot.2016.08.018
  197. Intasqui P, Agarwal A, Sharma R, Samanta L, Bertolla RP. Towards the identification of reliable sperm biomarkers for male infertility: a sperm proteomic approach. Andrologia 2018;50:e12919. https://doi.org/10.1111/and.12919
  198. Selvaraju S, Parthipan S, Somashekar L, et al. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017;7:42392. https://doi.org/10.1038/srep42392
  199. Slowinska M, Paukszto L, Jastrzebski JP, et al. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and posttesticular sperm maturation. Poult Sci 2020;99:6094-118. https://doi.org/10.1016/j.psj.2020.07.031
  200. Cho J, Uh K, Ryu J, et al. Development of PCR based approach to detect potential mosaicism in porcine embryos. J Anim Reprod Biotechnol 2020;35:323-8. https://doi.org/10.12750/JARB.35.4.323
  201. Kim S, Cheong HT, Park C. Regulation of the plasminogen activator activity and inflammatory environment via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells. J Anim Reprod Biotechnol 2020;35: 297-306. https://doi.org/10.12750/JARB.35.4.297
  202. Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA, Mohey-Elsaeed O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int J Vet Sci Med 2018;6:S49-S56. https://doi.org/10.1016/j.ijvsm.2017.11.001
  203. Carvalho JO, Sartori R, Machado GM, Mourao GB, Dode MAN. Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 2010;74:1521-30. https://doi.org/10.1016/j.theriogenology.2010.06.030
  204. Capra E, Turri F, Lazzari B, et al. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations. BMC Genomics 2017;18:14. https://doi.org/10.1186/s12864-016-3394-7
  205. Miller D, Ostermeier GC. Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update 2006;12:757-67. https://doi.org/10.1093/humupd/dml037
  206. Lalancette C, Miller D, Li Y, Krawetz SA. Paternal contributions: new functional insights for spermatozoal RNA. J Cell Biochem 2008;104:1570-9. https://doi.org/10.1002/jcb.21756