DOI QR코드

DOI QR Code

A Design and Effect of Maker Education Using Educational Artificial Intelligence Tools in Elementary Online Environment

초등 온라인 환경에서 교육용 인공지능 도구를 활용한 메이커 수업 설계 및 효과

  • 김근재 (서울오봉초등학교) ;
  • 한형종 (한국교통대학교 교육대학원)
  • Received : 2021.04.02
  • Accepted : 2021.06.20
  • Published : 2021.06.28

Abstract

In a situation where the online learning is expanding due to COVID-19, the current maker education has limitations in applying it to classes. This study is to design the class of online maker education using artificial intelligence tools in elementary school. Also, it is to identify the responses to it and to confirm whether it helps improve the learner's computational thinking and creative problem solving ability. The class was designed by the literature review and redesign of the curriculum. Using interveiw, the responses of instructor and learners were identified. Pre- and post-test using corresponding sample t-test was conducted. As a result, the class consisted of ten steps including empathizing, defining making problems, identifying the characteristics of material and tool, designing algorithms and coding using remixes, etc. For computing thinking and creative problem solving ability, statistically significant difference was found. This study has the significance that practical maker activities using educational artificial intelligence tools in the context of elementary education can be practically applied even in the online environment.

코로나19로 인한 온라인 학습이 확대되고 있는 상황에서 기존 메이커 교육은 학교 수업 현장에 적용하기에 한계를 지닌다. 본 연구는 초등학교의 온라인 환경에서 교육용 인공지능 도구를 활용한 메이커 수업을 설계하는 목적을 지닌다. 또한, 이에 대한 반응 확인과 함께 학습자의 컴퓨팅 사고력, 창의적 문제해결력 향상에 도움이 되었는지를 살펴 보고자 하였다. 이를 위해 선행연구 검토와 교육과정의 재구성을 통해 수업을 설계하였다. 면담을 통한 교수자와 학습자 반응 확인, 대응 표본 t검증을 활용한 사전-사후 분석이 이루어졌다. 연구 결과, 초등 온라인 환경에서 교육용 인공지능 도구를 활용한 메이커 수업은 공감하기, 메이킹 문제 정의하기, 재료 및 도구 특성 파악하기, 리믹스를 활용한 알고리즘 설계 및 코딩하기 등을 포함한 총 10단계로 구성된다. 학습자의 컴퓨팅 사고력과 창의적 문제해결력에 대한 사전-사후 분석 결과, 통계적으로 유의미한 차이가 나타났다. 본 연구는 초등교육 맥락에서 교육용 인공지능 도구를 활용한 실제적인 메이커 활동이 온라인 환경에서도 실제적으로 적용 가능하다는 점을 확인한 의미를 지닌다.

Keywords

References

  1. K. Kim & C. Lim. (2019). A developmental study of an instructional model for maker education using Single-Board Computer(SBC) in elementary school. Journal of Educational Technology, 35(3), 687-728. DOI : 10.17232/KSET.35.3.687
  2. B. Bevan. (2017). The promise and the promises of Making in science education. Studies in Science Education, 53(1), 75-103. DOI: 10.1080/03057267.2016.1275380
  3. E. R. Halverson & K. Sheridan. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495-504. DOI : 10.17763/haer.84.4.34j1g68140382063
  4. P. Blikstein., S. Martinez & H. Pang. (Ed.) (2016). Meaningful making: Projects and inspiration for fablabs and makerspaces. CA: Constructing modern knowledge press.
  5. K. Kim., H. Kwon., Y. Kim & J. Sung. (2020). Maker education A to Z. Seoul: Techvile.
  6. W. Son. (2020). Development of SW education class plan using artificial intelligence education platform: Focusing on upper grade of elementary school. Journal of The Korean Association of Information Education, 24(5), 453-462. DOI : 10.14352/jkaie.2020.24.5.453
  7. J. Park. (2020). The case study on artificial intelligence based maker education for pre-service teacher. Journal of Digital Contents Society, 21(4), 701-709. DOI : 10.9728/dcs.2020.21.4.701
  8. K. D. Glazewski & C. S. McKay. (2016). Designing maker-based instruction. In Reigeluth, C. M., Beatty, B. J., & Myers, R. D. (Eds.), Instructional-design theories and models, Volume IV: The learner-centered paradigm of education (pp.161-188). NY: Routledge. DOI : 10.4324/9781315795478
  9. Peppler, K., Halverson, E., & Kafai, Y. B. (Eds.). (2016). Makeology: Makers As Learners. NY: Routledge. DOI : 10.4324/9781315726496
  10. E. P. Clapp., J. Ross., J. O. Ryan., & S. Tishman. (2016). Maker-centered learning: Empowering young people to shape their worlds. John Wiley & Sons.
  11. J. A. Marshall & J. R. Harron. (2018). Making Learners: A Framework for Evaluating Making in STEM Education. Interdisciplinary Journal of Problem-Based Learning, 12(2), 1-12. DOI : 10.7771/1541-5015.1749
  12. L. Kang & H. Yoon. (2017). Exploring the evaluation framework of maker education. Journal of The Korea Contents Association, 17(11), 541-553. DOI : 10.5392/JKCA.2017.17.11.541
  13. R. Luckin., W. Holmes., M. Griffiths., M., & L. B. Forcier. (2016). Intelligence unleashed: An argument for AI in education. London: Pearson.
  14. J. Lee & J. Jang. (2017). Development of maker education program based on softeware coding for the science gifted. Journal of Gifted/Talented Education, 27(3), 331-348. DOI : 10.9722/JGTE.2017.27.3.331
  15. B. Sakulkueakulsuk., S. Witoon., P. Ngarmkajornwiwat., P. Pataranutaporn., W. Surareungchai., P. Pataranutaporn & P. Subsoontorn. (2018). Kids making AI: Integrating machine learning, gamification, and social context in STEM education. In Proceedings of 2018 IEEE international conference on teaching, assessment, and learning for engineering. (pp. 1005-1010). Wollongong, NSW, Australia. DOI : 10.1109/TALE.2018.8615293
  16. S. L. Chu., F. Quek., S. Bhangaonkar & A. Berman. (2017). Physical Making Online: A Study of Children's Maker Websites. In Proceedings of the 7th Annual Conference on Creativity and Fabrication in Education. (pp. 1-8). Stanford, CA, USA. DOI : 10.1145/3141798.3141803
  17. J. W. Creswell & J. D. Creswell (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications. DOI : 10.7748/nr.12.1.82.s2
  18. K. Kim. (2017). A study on information literacy education for enhancing computational thinking. The Journal of Korean Association of Computer Education 20(4), 59-66. https://doi.org/10.32431/KACE.2017.20.4.006
  19. H, Choi & K. Kim. (2015). The effects of scratch programming on preservice teachers: Assessment utilizing computational thinking and bloom's taxonomy. Journal of The Korean Association of Information Education, 19(2), 225-232. DOI : 10.14352/jkaie.2015.19.2.225
  20. S. C. Kong & H. Abelson. (2019). Computational thinking education. Singapore: Springer. DOI : 10.1007/978-981-13-6528-7
  21. C. Lim., S. Kim., H. Han & S. Seo. (2014). Application of smart support system for creative problem solving : Case study of art and design courses. Asian Journal of Education, 15(3), 171-201.
  22. C. Lim., H. Han., S. Hong., Y. Song & D. Lee. (2020). Design principles for improving creative thinking competency in corporate education. The Journal of Educational Information and Media, 26(3), 477-510. DOI : 10.15833/KAFEIAM.26.3.477
  23. D. J. Treffinger., S. G. Isaksen & K. B. Dorval. (2006). Creative problem solving: An introduction(4th ed.). Waco, TX: Prufrock Press.
  24. M. Resnick & E. Rosenbaum (2013). Designing for tinkerability. In M. Honey & D. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp. 163-181). NY: Routledge.
  25. S. Bae. (2020). Development of invention and maker education program using 3D printer for pre-service elementary teachers : Focused on online education. The Korean Journal of Technology Education, 20(2), 83-100. DOI : 10.34138/KJTE.2020.20.2.83
  26. Y. Hsu., Y. Ching & S. Baldwin. (2018). Physical computing for STEAM education: Maker-Educators' experiences in an online graduate course. Journal of Computers in Mathematics and Science Teaching, 37(1), 53-67.
  27. T. Im. (2019). Development of a blended learning based SW maker education program. Journal of Knowledge Information Technology and Systems, 14(3), 247-256. DOI : 10.34163/jkits.2019.14.3.004
  28. Pusan Metropolitan City Office of Education (2019). Guidebook for Artificail Intelligence based education. Goyang: Eoga publishing.