DOI QR코드

DOI QR Code

Multi-omics integration strategies for animal epigenetic studies - A review

  • Kim, Do-Young (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Jun-Mo (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2021.01.27
  • Accepted : 2021.04.21
  • Published : 2021.08.01

Abstract

Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021.

References

  1. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-50. https://doi.org/10.1038/nrg2809
  2. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457-63. https://doi.org/10.1038/nature02625
  3. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612-6. https://doi.org/10.1126/science.1191078
  4. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-60. https://doi.org/10.1038/38444
  5. Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005
  6. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95. https://doi.org/10.1038/cr.2011.22
  7. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol R 2000;64:435-59. https://doi.org/10.1128/Mmbr.64.2.435-459.2000
  8. Davie JR, Spencer VA. Control of histone modifications. J Cell Biochem 1999;75:141-8. https://doi.org/10.1002/(SICI)1097-4644(1999)75:32+<141::AID-JCB17>3.0.CO;2-A
  9. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81-120. https://doi.org/10.1146/annurev.biochem.70.1.81
  10. Kundu TK, Palhan VB, Wang ZX, An W, Cole PA, Roeder RG. Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 2000;6:551-61. https://doi.org/10.1016/S1097-2765(00)00054-X
  11. An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. In: Kundu TK, Dasgupta D, editors. Chromatin and disease. New York, USA: Springer-Verlag; 2007. p. 351-69. https://doi.org/10.1007/1-4020-5466-1_16
  12. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5. https://doi.org/10.1038/47412
  13. Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22:836-45. https://doi.org/10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
  14. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-80. https://doi.org/10.1126/science.1063127
  15. Ng SS, Yue WW, Oppermann U, Klose RJ. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 2009;66: 407. https://doi.org/10.1007/s00018-008-8303-z
  16. Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell 2009;33:1-13. https://doi.org/10.1016/j.molcel.2008.12.013
  17. Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China Ser C Life Sci 2009;52: 311-22. https://doi.org/10.1007/s11427-009-0054-z
  18. Neidhart M. DNA methylation and complex human disease. San Diego, CA, USA: Elsevier/AP, Academic Press is an imrpint of Elsevier; 2016.
  19. Chen SY, Sang NL. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2011;2011:Article ID 197946. https://doi.org/10.1155/2011/197946
  20. Crea F, Clermont PL, Mai A, Helgason CD. Histone modifications, stem cells and prostate cancer. Curr Pharm Design 2014;20:1687-97. https://doi.org/10.2174/13816128113199990522
  21. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002;419:407-11. https://doi.org/10.1038/nature01080
  22. Vermeulen M, Timmers HTM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics-Uk 2010;2:395-406. https://doi.org/10.2217/Epi.10.11
  23. Noma K, Allis CD, Grewal SIS. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 2001;293:1150-5. https://doi.org/10.1126/science.1064150
  24. Pinskaya M, Morillon A. Histone H3 lysine 4 di-methylation A novel mark for transcriptional fidelity? Epigenetics-Us 2009;4:302-6. https://doi.org/10.4161/epi.4.5.9369
  25. Hassan MQ, Tye CE, Stein GS, Lian JB. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone 2015;81:746-56. https://doi.org/10.1016/j.bone.2015.05.026
  26. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011;43:904-14. https://doi.org/10.1016/j.molcel.2011.08.018
  27. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94-108. https://doi.org/10.1038/nrg2504
  28. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9-17. https://doi.org/10.1016/j.gene.2007.12.008
  29. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics-Us 2014;9:3-12. https://doi.org/10.4161/epi.27473
  30. Tang X, Feng D, Li M, et al. Transcriptomic analysis of mRNA-lncRNA-miRNA interactions in hepatocellular carcinoma. Sci Rep 2019;9:16096. https://doi.org/10.1038/s41598-019-52559-x
  31. Zhang W, Tang G, Zhou S, Niu Y. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 2019;20:946. https://doi.org/10.1186/s12864-019-6284-y
  32. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001;294:797-9. https://doi.org/10.1126/science.1066315
  33. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597-610. https://doi.org/10.1038/nrg2843
  34. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20. https://doi.org/10.1016/j.cell.2004.12.035
  35. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
  36. Rajewsky N. microRNA target predictions in animals. Nat Genet 2006;38(Suppl):S8-13. https://doi.org/10.1038/ng1798
  37. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9. https://doi.org/10.1038/nature01957
  38. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60. https://doi.org/10.1126/science.1073827
  39. Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16:720-8. https://doi.org/10.1101/gad.974702
  40. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-62. https://doi.org/10.1016/0092-8674(93)90530-4
  41. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136:629-41. https://doi.org/10.1016/j.cell.2009.02.006
  42. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006;29:77-103. https://doi.org/10.1146/annurev.neuro.29.051605.112839
  43. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23:1494-504. https://doi.org/10.1101/gad.1800909
  44. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2:607-17. https://doi.org/10.1177/1947601910393957
  45. Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab 2000; 11:142-8. https://doi.org/10.1016/s1043-2760(00)00248-4
  46. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-22. https://doi.org/10.1038/nature08514
  47. Lee J, Jang SJ, Benoit N, et al. Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 2010;96:67-72. https://doi.org/10.1016/j.ygeno.2010.03.013
  48. Kim KD, El Baidouri M, Jackson SA. Accessing epigenetic variation in the plant methylome. Brief Funct Genomics 2014;13:318-27. https://doi.org/10.1093/bfgp/elu003
  49. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103:1412-7. https://doi.org/10.1073/pnas.0510310103
  50. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-92. https://doi.org/10.1038/nrg3230
  51. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662-73. https://doi.org/10.1038/nrg887
  52. Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 2015;27:84-97. https://doi.org/10.1007/s12640-014-9497-5
  53. Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 2011;39:5015-24. https://doi.org/10.1093/nar/gkr120
  54. Nestor CE, Ottaviano R, Reddington J, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 2012;22:467-77. https://doi.org/10.1101/gr.126417.111
  55. Li X, Teng S. RNA Sequencing in Schizophrenia. Bioinform Biol Insights 2015;9:53-60. https://doi.org/10.4137/BBI.S28992
  56. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484
  57. Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22:611-33. https://doi.org/10.1128/CMR.00019-09
  58. Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene 2003; 22:6497-507. https://doi.org/10.1038/sj.onc.1206865
  59. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008; 18:1509-17. https://doi.org/10.1101/gr.079558.108
  60. Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res 2009;19:1825-35. https://doi.org/10.1101/gr.094482.109
  61. Levin JZ, Berger MF, Adiconis X, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 2009;10:R115. https://doi.org/10.1186/gb-2009-10-10-r115
  62. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013;14:618-30. https://doi.org/10.1038/nrg3542
  63. Hafner M, Landgraf P, Ludwig J, et al. Identification of micro-RNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008;44:3-12. https://doi.org/10.1016/j.ymeth.2007.09.009
  64. Kriukiene E, Labrie V, Khare T, et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun 2013;4:2190. https://doi.org/10.1038/ncomms3190
  65. Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010;466:253-7. https://doi.org/10.1038/nature09165
  66. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008;452:215-9. https://doi.org/10.1038/nature06745
  67. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005;33:5868-77. https://doi.org/10.1093/nar/gki901
  68. Laurent L, Wong E, Li G, et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320-31. https://doi.org/10.1101/gr.101907.109
  69. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005;37:853-62. https://doi.org/10.1038/ng1598
  70. Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010;38:391-9. https://doi.org/10.1093/nar/gkp992
  71. Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016;9:26. https://doi.org/10.1186/s13072-016-0075-3
  72. Nair SS, Coolen MW, Stirzaker C, et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics-Us 2011;6:34-44. https://doi.org/10.4161/epi.6.1.13313
  73. Harris RA, Wang T, Coarfa C, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28:1097-1105. https://doi.org/10.1038/nbt.1682
  74. Bock C, Tomazou EM, Brinkman AB, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 2010;28:1106-14. https://doi.org/10.1038/nbt.1681
  75. Greally JM. The HELP-based DNA methylation assays. In: Tost J, editor. DNA methylation protocols. Methods in Molecular Biology, vol 1708. New York, NY, USA: Humana Press; 2018. pp. 191-207. https://doi.org/10.1007/978-1-4939-7481-8_11
  76. Khulan B, Thompson RF, Ye K, et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res 2006;16:1046-55. https://doi.org/10.1101/gr.5273806
  77. Suzuki M, Greally JM. DNA methylation profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP). Methods 2010;52:218-22. https://doi.org/10.1016/j.ymeth.2010.04.013
  78. Suzuki M, Jing QA, Lia D, Pascual M, McLellan A, Greally JM. Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 2010;11:R36. https://doi.org/10.1186/gb-2010-11-4-r36
  79. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 2011;6:468-81. https://doi.org/10.1038/nprot.2010.190
  80. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12:529-41. https://doi.org/10.1038/nrg3000
  81. Mohn F, Weber M, Schubeler D, Roloff TC. Methylated DNA immunoprecipitation (MeDIP). In: Tost J, editor. DNA methylation. Methods in Molecular Biology, vol 507. New York, NY, USA: Humana Press; 2009. pp. 55-64. https://doi.org/10.1007/978-1-59745-522-0_5
  82. Hu Q, Ao Q, Tan Y, Gan X, Luo Y, Zhu J. Genome-wide DNA methylation and RNA analysis reveal potential mechanism of resistance to Streptococcus agalactiae in GIFT strain of nile tilapia (Oreochromis niloticus). J Immunol 2020;204: 3182-90. https://doi.org/10.4049/jimmunol.1901496
  83. Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020;12:123. https://doi.org/10.1186/s13148-020-00913-6
  84. Zhang M, Yan FB, Li F, et al. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017;7:45564. https://doi.org/10.1038/srep45564
  85. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
  86. Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-15. https://doi.org/10.1093/nar/gks1094
  87. Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 2017;18:142. https://doi.org/10.1186/s12859-017-1559-2
  88. Shen J, Zhu B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol Med Rep 2018;17:7636-44. https://doi.org/10.3892/mmr.2018.8804
  89. Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018;4:24. https://doi.org/10.1038/s41540-018-0061-4
  90. Kim JM, Park JE, Yoo I, et al. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci Rep 2018;8: 5436. https://doi.org/10.1038/s41598-018-23655-1
  91. Lim B, Kim S, Lim KS, et al. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020;51:128. https://doi.org/10.1186/s13567-020-00850-5
  92. Lu Y, Boekschoten MV, Wopereis S, Muller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011;43:1307-18. https://doi.org/10.1152/physiolgenomics.00100.2011
  93. Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 2002;3:RESEARCH0059.1 https://doi.org/10.1186/gb-2002-3-11-research0059
  94. Acharjee A, Kloosterman B, Visser RGF, Maliepaard C. Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinformatics 2016;17 (Suppl 5):180. https://doi.org/10.1186/s12859-016-1043-4
  95. Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform 2016;17:628-41. https://doi.org/10.1093/bib/bbv108
  96. Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014;15:162. https://doi.org/10.1186/1471-2105-15-162
  97. Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:R60. https://doi.org/10.1186/gb-2003-4-9-r60
  98. Voigt A, Almaas E. Assessment of weighted topological overlap (wTO) to improve fidelity of gene co-expression networks. BMC Bioinformatics 2019;20:58. https://doi.org/10.1186/s12859-019-2596-9
  99. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999;21:20-4. https://doi.org/10.1038/4447
  100. Xu W, Xu M, Wang L, et al. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct Target Ther 2019;4:55. https://doi.org/10.1038/s41392-019-0081-6
  101. Silverbush D, Cristea S, Yanovich-Arad G, Geiger T, Beerenwinke N, Sharan R. Simultaneous integration of multi-omics data improves the identification of cancer driver modules. Cell Syst 2019;8:456-66. https://doi.org/10.1016/j.cels.2019.04.005
  102. Moreno-Estrada A, Gravel S, Zakharia F, et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet 2013;9:e1003925. https://doi.org/10.1371/journal.pgen.1003925
  103. Wang L, Xiao Y, Ping Y, et al. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer. PLoS One 2014;9:e104282. https://doi.org/10.1371/journal.pone.0104282
  104. Chella Krishnan K, Kurt Z, Barrere-Cain R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst 2018;6:103-15. https://doi.org/10.1016/j.cels.2017.12.006

Cited by

  1. Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages vol.11, pp.12, 2021, https://doi.org/10.3390/ani11123511