Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021.
References
- Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-50. https://doi.org/10.1038/nrg2809
- Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457-63. https://doi.org/10.1038/nature02625
- Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612-6. https://doi.org/10.1126/science.1191078
- Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-60. https://doi.org/10.1038/38444
- Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005
- Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95. https://doi.org/10.1038/cr.2011.22
- Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol R 2000;64:435-59. https://doi.org/10.1128/Mmbr.64.2.435-459.2000
- Davie JR, Spencer VA. Control of histone modifications. J Cell Biochem 1999;75:141-8. https://doi.org/10.1002/(SICI)1097-4644(1999)75:32+<141::AID-JCB17>3.0.CO;2-A
- Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81-120. https://doi.org/10.1146/annurev.biochem.70.1.81
- Kundu TK, Palhan VB, Wang ZX, An W, Cole PA, Roeder RG. Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 2000;6:551-61. https://doi.org/10.1016/S1097-2765(00)00054-X
- An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. In: Kundu TK, Dasgupta D, editors. Chromatin and disease. New York, USA: Springer-Verlag; 2007. p. 351-69. https://doi.org/10.1007/1-4020-5466-1_16
- Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5. https://doi.org/10.1038/47412
- Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22:836-45. https://doi.org/10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
- Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-80. https://doi.org/10.1126/science.1063127
- Ng SS, Yue WW, Oppermann U, Klose RJ. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 2009;66: 407. https://doi.org/10.1007/s00018-008-8303-z
- Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell 2009;33:1-13. https://doi.org/10.1016/j.molcel.2008.12.013
- Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China Ser C Life Sci 2009;52: 311-22. https://doi.org/10.1007/s11427-009-0054-z
- Neidhart M. DNA methylation and complex human disease. San Diego, CA, USA: Elsevier/AP, Academic Press is an imrpint of Elsevier; 2016.
- Chen SY, Sang NL. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2011;2011:Article ID 197946. https://doi.org/10.1155/2011/197946
- Crea F, Clermont PL, Mai A, Helgason CD. Histone modifications, stem cells and prostate cancer. Curr Pharm Design 2014;20:1687-97. https://doi.org/10.2174/13816128113199990522
- Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002;419:407-11. https://doi.org/10.1038/nature01080
- Vermeulen M, Timmers HTM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics-Uk 2010;2:395-406. https://doi.org/10.2217/Epi.10.11
- Noma K, Allis CD, Grewal SIS. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 2001;293:1150-5. https://doi.org/10.1126/science.1064150
- Pinskaya M, Morillon A. Histone H3 lysine 4 di-methylation A novel mark for transcriptional fidelity? Epigenetics-Us 2009;4:302-6. https://doi.org/10.4161/epi.4.5.9369
- Hassan MQ, Tye CE, Stein GS, Lian JB. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone 2015;81:746-56. https://doi.org/10.1016/j.bone.2015.05.026
- Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011;43:904-14. https://doi.org/10.1016/j.molcel.2011.08.018
- Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94-108. https://doi.org/10.1038/nrg2504
- Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9-17. https://doi.org/10.1016/j.gene.2007.12.008
- Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics-Us 2014;9:3-12. https://doi.org/10.4161/epi.27473
- Tang X, Feng D, Li M, et al. Transcriptomic analysis of mRNA-lncRNA-miRNA interactions in hepatocellular carcinoma. Sci Rep 2019;9:16096. https://doi.org/10.1038/s41598-019-52559-x
- Zhang W, Tang G, Zhou S, Niu Y. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 2019;20:946. https://doi.org/10.1186/s12864-019-6284-y
- Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001;294:797-9. https://doi.org/10.1126/science.1066315
- Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597-610. https://doi.org/10.1038/nrg2843
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20. https://doi.org/10.1016/j.cell.2004.12.035
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
- Rajewsky N. microRNA target predictions in animals. Nat Genet 2006;38(Suppl):S8-13. https://doi.org/10.1038/ng1798
- Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9. https://doi.org/10.1038/nature01957
- Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60. https://doi.org/10.1126/science.1073827
- Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16:720-8. https://doi.org/10.1101/gad.974702
- Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-62. https://doi.org/10.1016/0092-8674(93)90530-4
- Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136:629-41. https://doi.org/10.1016/j.cell.2009.02.006
- Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006;29:77-103. https://doi.org/10.1146/annurev.neuro.29.051605.112839
- Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23:1494-504. https://doi.org/10.1101/gad.1800909
- Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2:607-17. https://doi.org/10.1177/1947601910393957
- Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab 2000; 11:142-8. https://doi.org/10.1016/s1043-2760(00)00248-4
- Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-22. https://doi.org/10.1038/nature08514
- Lee J, Jang SJ, Benoit N, et al. Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 2010;96:67-72. https://doi.org/10.1016/j.ygeno.2010.03.013
- Kim KD, El Baidouri M, Jackson SA. Accessing epigenetic variation in the plant methylome. Brief Funct Genomics 2014;13:318-27. https://doi.org/10.1093/bfgp/elu003
- Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103:1412-7. https://doi.org/10.1073/pnas.0510310103
- Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-92. https://doi.org/10.1038/nrg3230
- Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662-73. https://doi.org/10.1038/nrg887
- Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 2015;27:84-97. https://doi.org/10.1007/s12640-014-9497-5
- Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 2011;39:5015-24. https://doi.org/10.1093/nar/gkr120
- Nestor CE, Ottaviano R, Reddington J, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 2012;22:467-77. https://doi.org/10.1101/gr.126417.111
- Li X, Teng S. RNA Sequencing in Schizophrenia. Bioinform Biol Insights 2015;9:53-60. https://doi.org/10.4137/BBI.S28992
- Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484
- Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22:611-33. https://doi.org/10.1128/CMR.00019-09
- Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene 2003; 22:6497-507. https://doi.org/10.1038/sj.onc.1206865
- Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008; 18:1509-17. https://doi.org/10.1101/gr.079558.108
- Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res 2009;19:1825-35. https://doi.org/10.1101/gr.094482.109
- Levin JZ, Berger MF, Adiconis X, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 2009;10:R115. https://doi.org/10.1186/gb-2009-10-10-r115
- Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013;14:618-30. https://doi.org/10.1038/nrg3542
- Hafner M, Landgraf P, Ludwig J, et al. Identification of micro-RNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008;44:3-12. https://doi.org/10.1016/j.ymeth.2007.09.009
- Kriukiene E, Labrie V, Khare T, et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun 2013;4:2190. https://doi.org/10.1038/ncomms3190
- Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010;466:253-7. https://doi.org/10.1038/nature09165
- Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008;452:215-9. https://doi.org/10.1038/nature06745
- Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005;33:5868-77. https://doi.org/10.1093/nar/gki901
- Laurent L, Wong E, Li G, et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320-31. https://doi.org/10.1101/gr.101907.109
- Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005;37:853-62. https://doi.org/10.1038/ng1598
- Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010;38:391-9. https://doi.org/10.1093/nar/gkp992
- Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016;9:26. https://doi.org/10.1186/s13072-016-0075-3
- Nair SS, Coolen MW, Stirzaker C, et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics-Us 2011;6:34-44. https://doi.org/10.4161/epi.6.1.13313
- Harris RA, Wang T, Coarfa C, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28:1097-1105. https://doi.org/10.1038/nbt.1682
- Bock C, Tomazou EM, Brinkman AB, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 2010;28:1106-14. https://doi.org/10.1038/nbt.1681
- Greally JM. The HELP-based DNA methylation assays. In: Tost J, editor. DNA methylation protocols. Methods in Molecular Biology, vol 1708. New York, NY, USA: Humana Press; 2018. pp. 191-207. https://doi.org/10.1007/978-1-4939-7481-8_11
- Khulan B, Thompson RF, Ye K, et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res 2006;16:1046-55. https://doi.org/10.1101/gr.5273806
- Suzuki M, Greally JM. DNA methylation profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP). Methods 2010;52:218-22. https://doi.org/10.1016/j.ymeth.2010.04.013
- Suzuki M, Jing QA, Lia D, Pascual M, McLellan A, Greally JM. Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 2010;11:R36. https://doi.org/10.1186/gb-2010-11-4-r36
- Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 2011;6:468-81. https://doi.org/10.1038/nprot.2010.190
- Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12:529-41. https://doi.org/10.1038/nrg3000
- Mohn F, Weber M, Schubeler D, Roloff TC. Methylated DNA immunoprecipitation (MeDIP). In: Tost J, editor. DNA methylation. Methods in Molecular Biology, vol 507. New York, NY, USA: Humana Press; 2009. pp. 55-64. https://doi.org/10.1007/978-1-59745-522-0_5
- Hu Q, Ao Q, Tan Y, Gan X, Luo Y, Zhu J. Genome-wide DNA methylation and RNA analysis reveal potential mechanism of resistance to Streptococcus agalactiae in GIFT strain of nile tilapia (Oreochromis niloticus). J Immunol 2020;204: 3182-90. https://doi.org/10.4049/jimmunol.1901496
- Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020;12:123. https://doi.org/10.1186/s13148-020-00913-6
- Zhang M, Yan FB, Li F, et al. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017;7:45564. https://doi.org/10.1038/srep45564
- Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
- Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-15. https://doi.org/10.1093/nar/gks1094
- Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 2017;18:142. https://doi.org/10.1186/s12859-017-1559-2
- Shen J, Zhu B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol Med Rep 2018;17:7636-44. https://doi.org/10.3892/mmr.2018.8804
- Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018;4:24. https://doi.org/10.1038/s41540-018-0061-4
- Kim JM, Park JE, Yoo I, et al. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci Rep 2018;8: 5436. https://doi.org/10.1038/s41598-018-23655-1
- Lim B, Kim S, Lim KS, et al. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020;51:128. https://doi.org/10.1186/s13567-020-00850-5
- Lu Y, Boekschoten MV, Wopereis S, Muller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011;43:1307-18. https://doi.org/10.1152/physiolgenomics.00100.2011
- Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 2002;3:RESEARCH0059.1 https://doi.org/10.1186/gb-2002-3-11-research0059
- Acharjee A, Kloosterman B, Visser RGF, Maliepaard C. Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinformatics 2016;17 (Suppl 5):180. https://doi.org/10.1186/s12859-016-1043-4
- Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform 2016;17:628-41. https://doi.org/10.1093/bib/bbv108
- Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014;15:162. https://doi.org/10.1186/1471-2105-15-162
- Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:R60. https://doi.org/10.1186/gb-2003-4-9-r60
- Voigt A, Almaas E. Assessment of weighted topological overlap (wTO) to improve fidelity of gene co-expression networks. BMC Bioinformatics 2019;20:58. https://doi.org/10.1186/s12859-019-2596-9
- Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999;21:20-4. https://doi.org/10.1038/4447
- Xu W, Xu M, Wang L, et al. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct Target Ther 2019;4:55. https://doi.org/10.1038/s41392-019-0081-6
- Silverbush D, Cristea S, Yanovich-Arad G, Geiger T, Beerenwinke N, Sharan R. Simultaneous integration of multi-omics data improves the identification of cancer driver modules. Cell Syst 2019;8:456-66. https://doi.org/10.1016/j.cels.2019.04.005
- Moreno-Estrada A, Gravel S, Zakharia F, et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet 2013;9:e1003925. https://doi.org/10.1371/journal.pgen.1003925
- Wang L, Xiao Y, Ping Y, et al. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer. PLoS One 2014;9:e104282. https://doi.org/10.1371/journal.pone.0104282
- Chella Krishnan K, Kurt Z, Barrere-Cain R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst 2018;6:103-15. https://doi.org/10.1016/j.cels.2017.12.006
Cited by
- Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages vol.11, pp.12, 2021, https://doi.org/10.3390/ani11123511