정적 및 동적 회복탄력성 기반 담수호 수자원문제 평가

  • 황순호 (서울대학교 농업생명과학연구원) ;
  • 강문성 (서울대학교 조경.지역시스템공학부 지역시스템공학전공)
  • Published : 2021.05.31

Abstract

Keywords

Acknowledgement

본 기사는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C2003808).

References

  1. 심명필, 2000. 수자원사업 예비타당성조사의 방법론과 지침 연구. 한국수자원학회논문집. 33(S), 447-452.
  2. 황순호, 2020. 담수호 수질 관리를 위한 SWAT-EFDC 모형 기반 동적 회복탄력성 평가. 서울대학교 박사학위논문.
  3. Bruneau, M, Chang, S.E., Eguchi, R.T., Lee, G.C., Rourke, T.D.O, Reinhorn, A.M., Shinozuka, M., Tierney, K, Wallace, W.A., Winterfeldt, D.V., 2003. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra 19:733-752. https://doi.org/10.1193/1.1623497
  4. Butler, D., Farmani, R., Fu, G., Ward, S., Diao, K., Astaraie-Imani, M., 2014. A new approach to urban water management: Safe and Sure. Procedia Eng. 89, 347-354. https://doi.org/10.1016/j.proeng.2014.11.198
  5. Cimellaro, G. P., Reinhorn, A. M., Bruneau, M., 2010. Framework for analytical quantification of disaster resilience. Engineering structures, 32(11), 3639-3649. https://doi.org/10.1016/j.engstruct.2010.08.008
  6. Hashimoto, T., Loucks, D.P., Stedinger, J.R., 1982. Reliability, resiliency, robustness, and vulnerability criteria for water resource systems. Water Resources Research. 18(1), 14-26. https://doi.org/10.1029/WR018i001p00014
  7. Holling, C.S., 1973. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 4, 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  8. Hwang, S., Jun, S., Song, J., Kim, K., Kim, H., Kang, M. 2021. Application of the SWAT-EFDC Linkage Model for Assessing Water Quality Management in an Estuarine Reservoir Separated by Levees, Appl. Sci. 11(9): 3911. https://doi.org/10.3390/app11093911
  9. Kjeldsen, T.R., Rosbjerg, D., 2004. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems. Hydrological Sciences Journal, 49(5), 755-767. https://doi.org/10.1623/hysj.49.5.755.55136
  10. Kamae, Y., Mei, W., & Xie, S. P. (2019). Ocean warming pattern effects on future changes in East Asian atmospheric rivers. Environmental Research Letters, 14(5), 054019. https://doi.org/10.1088/1748-9326/ab128a
  11. Loucks, D.P., 1997. Quantiifying trends in system sustainability, Hydrological Sciences Journal 42(4), 513-530. https://doi.org/10.1080/02626669709492051
  12. Merrill, N. H., Mulvaney, K. K., Martin, D. M., Chintala, M. M., Berry, W., Gleason, T. R., Humphries, A. T., 2018. A resilience framework for chronic exposures: water quality and ecosystem services in coastal social-ecological systems. Coastal Management 46(4), 242-258. https://doi.org/10.1080/08920753.2018.1474066
  13. Simonovic, S. P., Arunkumar, R., 2016. Quantification of resilience to water scarcity, a dynamic measure in time and space. Proceedings of the International Association of Hydrological Sciences 373, 13-17. https://doi.org/10.5194/piahs-373-13-2016
  14. Sweetapple, C., Fu, G., Butler, D., 2017. Reliable, robust, and resilient system design framework with application to wastewater-treatment plant control. J. Environ. Eng. 143(3): 04016086. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001171
  15. Vugrin, E. D., Warren, D. E., Ehlen, M. A., 2010. A resilience assessment framework for infrastructure and economic systems: quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress 30(3), 280-290. https://doi.org/10.1002/prs.10437