Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2018R1D1A1B0704322013). 이 논문은 2021년도 광운대학교 대학혁신지원사업에 의해 연구되었음.
References
- F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3D mapping with an RGB-D camera," IEEE Transactions on Robotics (T-RO), vol. 30, no. 1, pp. 177-187, 2013. https://doi.org/10.1109/TRO.2013.2279412
- M. Labb and F. Michaud, "Online global loop closure detection for large-scale multi-session graph-based SLAM," in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014, pp. 2661-2666.
- M. Munaro and E. Menegatti, "Fast RGB-D People Tracking for Service Robots," Autonomous Robots, vol 37, pp. 227-242, 2014. https://doi.org/10.1007/s10514-014-9385-0
- C. Choi and H. Christensen, "RGB-D object tracking: A particle filter approach on GPU," in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 1084-1091, 2013.
- J. Tang, S. Miller, A. Singh, and P. Abbeel, "A textured object recognition pipeline for color and depth image data," in Proc. of the IEEE International Conference on Robotics and Automation, Saint Paul, USA, pp. 3467-3474, 2012.
- T. Munea, Y. Jembre, H. Weldegebriel, L. Chen, C. Huang and C. Yang, "The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation," IEEE Access, vol. 8, pp. 133330-133348, 2020. https://doi.org/10.1109/access.2020.3010248
- M. Zollhofer, P. Stotko, A. Gorlitz, C. Theobalt, M. Niessner, R. Klein and A. Kolb, "State of the Art on 3D Reconstruction with RGB-D Cameras," Computer Graphics Forum, vol. 37, pp. 625-652, 2018.
- Giancola S., Valenti M., Sala R. "State-of-the-Art Devices Comparison. In: A Survey on 3D Cameras: Metrological Comparison of Time-of-Fli ght, Structured-Light and Active Stereoscopy Technologies," Springer Briefs in Computer Science, pp. 29-39, 2018.
- G. Chen, G. Cui, Z. Jin, F. Wu and X. Chen, "Accurate Intrinsic and Extrinsic Calibration of RGB-D Cameras With GP-Based Depth Correction," IEEE Sensors Journal, vol. 19, no. 7, pp. 2685-2694, 1 2019. https://doi.org/10.1109/jsen.2018.2889805
- W. Yun and J. Kim, "3D Modeling and WebVR Implementation using Azure Kinect, Open3D, and Three.js," 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, pp. 240-243, 2020.
- S. Yeh, Y. Chiou, H. Chang, W. Hsu, S. Liu and F. Tsai, "Performance improvement of offline phase for indoor positioning systems using Asus Xtion and smartphone sensors," Journal of Communications and Networks, vol. 18, no. 5, pp. 837-845, October 2016. https://doi.org/10.1109/JCN.2016.000112
- A. Zabatani et al., "Intel® RealSense™ SR300 Coded Light Depth Camera," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 10, pp. 2333-2345, 1 Oct. 2020. https://doi.org/10.1109/tpami.2019.2915841
- G. Unal, A. Yezzi, S. Soatto and G. Slabaugh, "A Variational Approach to Problems in Calibration of Multiple Cameras," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 1322-1338, Aug. 2007, https://doi.org/10.1109/TPAMI.2007.1035.
- F. Basso, E. Menegatti and A. Pretto, "Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras," IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1315-1332, Oct. 2018. https://doi.org/10.1109/tro.2018.2853742
- K. Khoshelham and S. O. Elberink, "Accuracy and resolution of kinect depth data for indoor mapping applications," Sensors, vol. 12, no. 2, pp. 1437-1454, 2012. https://doi.org/10.3390/s120201437
- I. Mikhelson, P. Lee, A. Sahakian, Y. Wu, and A. Katsaggelos, "Automatic, fast, online calibration between depth and color cameras," Journal of Visual Communication and Image Representation, vol. 25, 2014.
- I. V. Mikhelson, P. G. Lee, A. V. Sahakian, Y. Wu, and A. K. Katsaggelos, "Automatic, fast, online calibration between depth and color cameras," Journal of Visual Communication and Image Representation, vol. 25, 2014.
- A. N. Staranowicz, G. R. Brown, F. Morbidi, and G. L. Mariottini, "Practical and accurate calibration of RGB-D cameras using spheres," Computer Vision and Image Understanding, vol. 137, pp. 102-114, 2015. https://doi.org/10.1016/j.cviu.2015.03.013
- K. Zheng, Y. Chen, F. Wu, and X. Chen, "A general batch-calibration framework of service robots," in Proc. Int. Conf. Intell. Robot. Appl. Springer, pp. 275-286, 2017.
- M. Lindner, I. Schiller, A. Kolb, and R. Koch, "Time-of-flight sensor calibration for accurate range sensing," Computer Vision and Image Understanding, vol. 114, no. 12, pp. 1318-1328, 2010. https://doi.org/10.1016/j.cviu.2009.11.002
- A. Kuznetsova and B. Rosenhahn, "On calibration of a low-cost time-offlight camera," Computer Vision - ECCV 2014 Workshops, Springer International Publishing, pp. 415-427, 2015.
- D. Ferstl, C. Reinbacher, G. Riegler, M. Rther, and H. Bischof, "Learning depth calibration of time-of-flight cameras," Proceedings of the British Machine Vision Conference (BMVC), pp. 102.1-102.12, September, 2015.
- A. Perez-Yus, E. Fernandez-Moral, G. Lopez-Nicolas, J. Guerrero, and P. Rives, "Extrinsic calibration of multiple RGB-D cameras from line observations," IEEE Robot. Automat. Lett, vol. 3, no. 1, pp. 273-280, 2018. https://doi.org/10.1109/LRA.2017.2739104
- N. Fukushima, "ICP with Depth Compensation for Calibration of Multiple ToF Sensors," 2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), Helsinki, Finland, pp. 1-4, 2018.
- K. Desai, B. Prabhakaran and S. Raghuraman, "Skeleton-based Continuous Extrinsic Calibration of Multiple RGB-D Kinect Cameras," Proceedings of the 9th ACM Multimedia Systems Conference, pp. 250-257, June 2018.
- K. Kim, B. Park, D. Kim, S. Kim, and Y. Seo, "Real-time 3D Volumetr ic Model Generation using Multiview RGB-D Camera," Journal of Bro adcast Engineering,Vol. 25, No. 3, pp. 439-448, May 2020.