DOI QR코드

DOI QR Code

Closed loop cable robot for large horizontal workspaces

  • Juarez-Perez, Sergio (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM)) ;
  • Gonzalez-Rodriguez, Antonio (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM)) ;
  • Rubio-Gomez, Guillermo (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM)) ;
  • Rodriguez-Rosa, David (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM)) ;
  • Ottaviano, Erika (Facolta di Ingegneria Industriale di Cassino (UNICAS)) ;
  • Castillo-Garcia, Fernando J. (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
  • Received : 2020.07.16
  • Accepted : 2020.10.10
  • Published : 2021.02.25

Abstract

Inspection and maintenance of civil structures are important issues for sustainability of existing and new infrastructures. Classical approach relies on large human activities eventually performed in unsafe conditions. This paper proposed a non-invasive solution for inspecting horizontal surface such as decks of bridges. The proposal presented here is based in cable-driven robots and allows to inspect large surfaces maintaining a very low vertical occupancy in comparison to the conventional architecture of this kind of robot. Using closed cables loop instead of a set of cables a device with low motorization power and very large workspace is designed and prototyped. As example of control an inverse dynamics technique is applied to control the end-effector where inspection tool is located, e.g., a vision system. Experimental results demonstrate that this novel device allows to inspect large horizontal surfaces, with low motorization and low vertical occupancy.

Keywords

Acknowledgement

The research described in this paper was financially supported by Research Fund for Coal and Steel grant agreement No 800687 in the framework of DESDEMONA project. Authors wish to thank the financial Support provided by the university of Castilla-La Mancha and the European Social Fund through the pre-doctoral funding [2019/451].

References

  1. Abbasnejad, G. and Carricato, M. (2015), "Direct geometricostatic problem of underconstrained cable-driven parallel robots with n cables", IEEE Transact. Robot., 31(2), 468-478. https://doi.org/10.1109/TRO.2015.2393173
  2. Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., Int. J., 13(6), 901-925. https://doi.org/10.12989/sss.2014.13.6.901
  3. Albus, J., Bostelman, Dagalakis, N. (1993), "The nist robocrane", J. Robot. Syst., 10(5), 709-724. https://doi.org/10.1002/rob.4620100509
  4. Bosscher, P. (2006), "Cable-suspended robotic contour crafting system", Automat. Constr., 17, 45-55. https://doi.org/10.1016/j.autcon.2007.02.011
  5. CableRobot Simulator (2020), "Cable-driven parallel robots - motion simulation in a new dimension", Accessed: 2020-07-10. http://www.ipa.fraunhofer.de/en/cable-driven_parallel_robots.html
  6. Carricato, M. and Merlet, J.-P. (2013), "Stability analysis of underconstrained cable-driven parallel robots", IEEE Transact. Robot., 29(1), 288-296. https://doi.org/10.1109/TRO.2012.2217795
  7. Castelli, G., Ottaviano, E. and Rea, P. (2014), "A Cartesian cablesuspended robot for improving end-users mobility in an urban environment", Robot. Comput.-Integr. Manuf., 30(3), 335-343. https://doi.org/10.1016/j.rcim.2013.11.001
  8. Cone, L.L. (1985), "Skycam-an aerial robotic camera system", Byte, 10(10), 122.
  9. Gonzalez-Rodriguez, A., Castillo-Garcia, F.J., Ottaviano, E., Rea, P. and Gonzalez-Rodriguez A.G. (2017), "On the effects of the design of cable-Driven robots on kinematics and dynamics models accuracy", Mechatronics, 43, 18-27. http://dx.doi.org/10.1016/j.mechatronics.2017.02.002
  10. Havlik, S. (2000), "A cable-suspended robotic manipulator for large workspace operations", Comput. Aided Civil Infrastruct. Eng., 15(6), 56-68. https://doi.org/10.1111/0885-9507.00171
  11. Huang, T.L., Zhou, H., Chen, H.P. and Ren, W.X. (2016), "Stochastic modelling and optimum inspection and maintenance strategy for fatigue affected steel bridge members", Smart Struct. Syst., Int. J., 18(3), 569-584. https://doi.org/10.12989/SSS.2016.18.3.569
  12. Irvine, H.M. (1981), "Cable Structures", The MIT Press.
  13. Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
  14. Kawamura, S., Choe, W., Tanaka, S. and Pandian, S.R. (1995), "Development of an ultrahigh speed robot falcon using wire drive system", Proceedings of IEEE International Conference on Robotics and Automattion, 1, pp. 215-220.
  15. Kawamura, S., Kino, H. and Won, C. (2000), "High-speed manipulation by using parallel wiredriven robots", Robotica, 18(1), 13-21. https://doi.org/10.1017/S0263574799002477
  16. Kim, C.W., Isemoto, R., McGetrick, P., Kawatani, M. and O'Brien, E.J. (2014), "Drive-by bridge inspection from three different approaches", Smart Struct. Syst., Int. J., 13(5), 775-796. https://doi.org/10.12989/sss.2014.13.5.775
  17. Kozak, K., Zhou, Q. and Wang, J. (2006), "Static analysis of cable-driven manipulators with non-negligible cable mass", IEEE Transact. Robot., 22(3), 425-433. https://doi.org/10.1109/TRO.2006.870659
  18. Merlet, J.-P. (2016), "A generic numerical continuation scheme for solving the direct kinematics of cable-driven parallel robot with deformable cables", Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 4337-4343.
  19. Nan, R. (2006), "Five hundred meter aperture spherical radio telescope (FAST)", In: Science in China series G, 49(2), 129-148. https://doi.org/10.1007/s11433-006-0129-9
  20. Nan, R. and Peng, B. (2000), "A chinese concept for 1km radio telescope", Acta Astronautica, 46(10-12), 667-675. https://doi.org/10.1016/S0094-5765(00)00030-8
  21. Ottaviano, E. and Castelli, G. (2010), "A study on the effects of cable mass and elasticity in cable-based parallel manipulators", Proceedings of the 18th CISM-IFToMM Symposium, On Robot Design, Dynamics and Control, Springer Ed. Udine, pp. 149-156.
  22. Ottaviano, E., Arena, A., Gattulli, V. and Potenza, F. (2019), "Slackening effects in 2D exact positioning in cable-driven parallel manipulators", In: A. Pott, T. Bruckmann (Eds.), Mechanisms and Machine Science, 74, Springer, Cham, pp. 319-330.
  23. Pott, A. (2010), "An algorithm for real-time forward kinematics of cable-driven parallel robots", In: Advances in Robot Kinematics, Springer, pp. 529-538.
  24. Pott, A., Mutherich, H., Kraus, W., Schmidt, V., Miermeister, P. and Verl, A. (2013), "IPAnema: a family of cable-driven parallel robots for industrial applications", In: Cable-Driven Parallel Robots (pp. 119-134), Springer, Berlin, Heidelberg.
  25. Roberts, R., Graham, T. and Lippitt, T. (1998), "On the inverse kinematics, statics, and fault tolerance of cable-suspended robots", J. Robot. Syst., 15(10), 581-597. https://doi.org/10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
  26. Skycam (2020), Accessed: 2020-07-10. https://en.wikipedia.org/wiki/Skycam
  27. Wang, Q., Kim, M.K., Sohn, H. and Cheng, J.C. (2016), "Surface flatness and distortion inspection of precast concrete elements using laser scanning technology", Smart Struct. Syst., Int. J., 18(3), 601-623. https://doi.org/10.12989/sss.2016.18.3.601
  28. Yangwen, X., Qi, L., Yaqing, Z. and Bin, L. (2010), "Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel", Chinese J. Aeronaut., 23(4), 393-400. https://doi.org/10.1016/S1000-9361(09)60233-8