DOI QR코드

DOI QR Code

Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery

복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향

  • Ahn, Won Jun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology) ;
  • Hwang, Jin Ung (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology) ;
  • Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology) ;
  • Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology)
  • 안원준 (한국화학연구원 C1가스탄소융합연구센터) ;
  • 황진웅 (한국화학연구원 C1가스탄소융합연구센터) ;
  • 임지선 (한국화학연구원 C1가스탄소융합연구센터) ;
  • 강석창 (한국화학연구원 C1가스탄소융합연구센터)
  • Received : 2021.04.06
  • Accepted : 2021.04.26
  • Published : 2021.06.10

Abstract

A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.

천연 흑연의 음극재 적용을 위하여 정제 공정을 실시하였으며, 공정에 따른 흑연의 구조적 변화와 불순물 함량이 음극 특성에 미치는 영향을 고찰하였다. 천연 흑연은 불화암모늄과 황산을 동일 비로 하여 사용량을 달리한 산처리 및 온도(800~2500 ℃)를 달리한 열처리를 통하여 화학적/물리적으로 정제되었다. 산을 이용한 불순물 제거는 한계가 있었으며, 이후 진행된 2500 ℃까지의 열처리를 통해 Si과 같은 일부 원소를 제외하고 대부분의 불순물이 전량 제거되는 것을 확인하였다. 복합 정제 공정에 따라 제조된 흑연 음극재의 특성이 향상되었으며, 구조와 불순물 함량 변화는 각각 용량 및 속도 특성과 초기 쿨롱 효율에 지배적인 영향을 미쳤다. 복합 정제 공정은 흑연 구조를 향상시켰으며, 불순물을 효율적으로 제거하여 SEI층 형성 억제 및 Li+ 삽입 공간 확대를 통해 리튬 이온 전지의 성능을 향상시켰다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('10083621').

References

  1. M. A. Hannan, M. H. Lipu, A.Hussain, and A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renew. Sust. Energ. Rev., 78, 834-854 (2017). https://doi.org/10.1016/j.rser.2017.05.001
  2. A. F. Gonzalez, N. H. Yang, and R. S. Liu, Silicon anode design for lithium-ion batteries: Progress and perspectives, J. Phys. Chem. C, 121(50), 27775-27787 (2017). https://doi.org/10.1021/acs.jpcc.7b07793
  3. N. Dimov, S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations, Electrochim. Acta, 48(11), 1579-1587 (2003). https://doi.org/10.1016/S0013-4686(03)00030-6
  4. A. Manthiram, An outlook on lithium ion battery technology, ACS Central. Sci., 3(10), 1063-1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
  5. M. Nie, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy, J. Phys. Chem. C, 117(26), 13403-13412 (2013). https://doi.org/10.1021/jp404155y
  6. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustain. Energ. Fuels., 4(11), 5387-5416 (2020). https://doi.org/10.1039/D0SE00175A
  7. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172, 162-171 (2018). https://doi.org/10.1016/j.fuproc.2017.12.018
  8. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
  9. H. Zhao, J. Ren, X. He, J. Li, C. Jiang, and C. Wan, Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries, Electrochim. Acta, 52(19), 6006-6011 (2007). https://doi.org/10.1016/j.electacta.2007.03.050
  10. A. D. Jara, and J. Y. Kim, Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes, Mater. Today Commun., 25, 101437 (2020). https://doi.org/10.1016/j.mtcomm.2020.101437
  11. K. Zaghib, X. Song, A. Guerfi, R.Rioux, and K. Kinoshita, Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal., J. Power Sources, 119, 8-15 (2003). https://doi.org/10.1016/S0378-7753(03)00116-2
  12. A. D. Jara, A. Betemariam, G. Woldetinsae, and J. Y. Kim, Purification, application and current market trend of natural graphite: A review, Int. J. Min. Sci. Technol., 29(5), 671-689 (2019). https://doi.org/10.1016/j.ijmst.2019.04.003
  13. H. Wang, Q. Feng, X. Tang, and K. Liu, Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process, Sep. Sci. Technol., 51(14), 2465-2472 (2016). https://doi.org/10.1080/01496395.2016.1206933
  14. N. A. Laziz, J. Abou-Rjeily, A. Darwiche, J. Toufaily, A. Outzourhit, F. Ghamouss, and M. T. Sougrati, Li-and Na-ion storage performance of natural graphite via simple flotation process, J. Electrochem. Sci. Technol., 9(4), 320-329 (2018). https://doi.org/10.5229/JECST.2018.9.4.320
  15. B. G. Kim, S. K. Choi, C. L. Park, H. S. Chung, and H. S. Jeon, Inclusion of gangue mineral and its mechanical separation from expanded graphite, Part. Sci. Technol., 21(4), 341-351 (2003). https://doi.org/10.1080/716100574
  16. R. Lloyd and M. J. Turner, Method for the continuous chemical reduction and removal of mineral matter contained in carbon structure, US Patent 4,780,112 (1988).
  17. T. Matsumoto and T. Hoshikawa., Method for manufacturing high purity graphite material. US Patent 5,419,889 (1995).
  18. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 204(3-4), 277-282 (1993). https://doi.org/10.1016/0009-2614(93)90009-P
  19. X. Ding, R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, and L. Wang, A new magnetic expanded graphite for removal of oil leakage, Mar. Pollut. Bull., 81(1), 185-190 (2014). https://doi.org/10.1016/j.marpolbul.2014.01.056
  20. H. Shi, J. Barker, M. Y. Saidi, and R. Koksbang, Structure and lithium intercalation properties of synthetic and natural graphite, J. Electrochem. Soc., 143(11), 3466-3472 (1996). https://doi.org/10.1149/1.1837238
  21. N. C. Gallego, C. I. Contescu, H. M. Meyer III, J. Y. Howe, R. A. Meisner, E. A. Payzant, M. J. Lance, S. Y. Yoon, M. Denlinger, D. L. Wood III, Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries, Carbon, 72, 393-401 (2014). https://doi.org/10.1016/j.carbon.2014.02.031
  22. E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, The effect of acid treatment on the surface chemistry and topography of graphite, Carbon, 61, 124-133 (2013). https://doi.org/10.1016/j.carbon.2013.04.076
  23. E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, Improved graphite anode for lithium-ion batteries chemically: Bonded solid electrolyte interface and nanochannel formation, J. Electrochem. Soc., 143(1), L4 (1996). https://doi.org/10.1149/1.1836372
  24. K. Leung, and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 12(25), 6583-6586 (2010). https://doi.org/10.1039/b925853a
  25. Y. Lin, Z. H. Huang, X. Yu, W. Shen, Y. Zheng, and F. Kang, Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid, Electrochim. Acta, 116, 170-174 (2014). https://doi.org/10.1016/j.electacta.2013.11.057
  26. J. Christensen and J. Newman, Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery, J. Electrochem. Soc., 150(11), A1416 (2003). https://doi.org/10.1149/1.1612501
  27. I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 75(2), 214-222 (1998). https://doi.org/10.1016/S0378-7753(98)00101-3
  28. U. Anik, S. Cevik, and M. Pumera, Effect of nitric acid "washing" procedure on electrochemical behavior of carbon nanotubes and glassy carbon µ-particles, Nanoscale Res. Lett., 5(5), 846-852 (2010). https://doi.org/10.1007/s11671-010-9573-6
  29. T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, J. Ozaki, and T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon, 125, 146-155 (2017). https://doi.org/10.1016/j.carbon.2017.09.049
  30. R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, and S. Santucci, XPS studies on SiOx thin films, Appl. Surf. Sci., 70, 222-225 (1993). https://doi.org/10.1016/0169-4332(93)90431-A
  31. T. S. Aaraes, E. Ringdalen, and M. Tangstad, Silicon carbide formation from methane and silicon monoxide, Sci. Rep., 10(1), 1-11 (2020). https://doi.org/10.1038/s41598-019-56847-4
  32. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, Aluminum for plasmonics, ACS Nano, 8(1), 834-840 (2014). https://doi.org/10.1021/nn405495q
  33. Q. Wang, Y. Ma, L. Liu, S. Yao, W. Wu, Z. Wang, and K. K. Ostrikov, Plasma enabled Fe2O3/Fe2O4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries, Nanomaterials, 10(4), 782-793 (2020). https://doi.org/10.3390/nano10040782
  34. S. Tougaard, Improved XPS analysis by visual inspection of the survey spectrum, Surf. Interface Anal., 50(6), 657-666 (2018). https://doi.org/10.1002/sia.6456
  35. B. Lesiak, L. Kover, J. Toth, J. Zemek, P. Jiricek, A. Kromka, and N. J. A. S. S. Rangam, C sp2/sp3 hybridisations in carbon nanomaterials-XPS and (X) AES study, Appl. Surf. Sci., 452, 223-231 (2018). https://doi.org/10.1016/j.apsusc.2018.04.269
  36. S. Contarini, S. P. Howlett, C. Rizzo, and B. A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Appl. Surf. Sci., 51(3-4), 177-183 (1991). https://doi.org/10.1016/0169-4332(91)90400-E
  37. S. Kundu, Y. Wang, W. Xia, and M. Muhler, Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study, J. Phys. Chem. C, 112(43), 16869-16878 (2008). https://doi.org/10.1021/jp804413a
  38. J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2(6), 1319-1324 (2000). https://doi.org/10.1039/a908800h
  39. A. K. Friedman, W. Shi, Y. Losovyj, A. R. Siedle, and L. A. Baker, Mapping microscale chemical heterogeneity in Nafion membranes with X-ray photoelectron spectroscopy, J. Electrochem. Soc., 165 (11), H733 (2018). https://doi.org/10.1149/2.0771811jes
  40. J. W. Song, C. C. Nguyen, and S. W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries, RSC Adv., 2(5), 2003-2009 (2012). https://doi.org/10.1039/c2ra01183b
  41. H. Zhu, M. H. A. Shiraz, L. Liu, Y. Hu, and J. Liu, A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries, Nanotechnology, 32(14), 144001 (2021). https://doi.org/10.1088/1361-6528/abd580
  42. D. D. Hawn and B. M. DeKoven, Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides, Surf. Interface Anal., 10(2-3), 63-74 (1987). https://doi.org/10.1002/sia.740100203
  43. B. T. Hang, I. Watanabe, T. Doi, S. Okada, and J. I. Yamaki, Electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery anod, J. Power Sources, 161(2), 1281-1287 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.002
  44. D. Bar-Tow, E. Peled, and L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc., 146(3), 824 (1999). https://doi.org/10.1149/1.1391688