DOI QR코드

DOI QR Code

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand (Department of Mathematics, National Institute of Technology Manipur) ;
  • Reingachan, N. (Department of Mathematics, National Institute of Technology Manipur) ;
  • Devi, Khangembam Babina (Department of Mathematics, National Institute of Technology Manipur) ;
  • Devi, Maisnam Triveni (Department of Mathematics, National Institute of Technology Manipur) ;
  • Krishnadas, Kshetrimayum (Department of Mathematics, National Institute of Technology Manipur)
  • Received : 2020.09.25
  • Accepted : 2021.03.21
  • Published : 2021.06.15

Abstract

Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

Keywords

Acknowledgement

The authors wish to thank the referees for their valuable comments.

References

  1. V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
  2. A. Aziz and N.A. Rather, Some Zygmund type Lp inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29. https://doi.org/10.1016/S0022-247X(03)00530-4
  3. A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 3 (2004), 379-391.
  4. A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 4 (1998), 543-550.
  5. M. Bidkham and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324. https://doi.org/10.1016/0022-247X(92)90298-R
  6. N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Ned-erl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math 9(1947), 591-598.
  7. R.B. Gardner and N.K. Govil, An Lp inequality for a polynomial and its derivative, J. Math. Anal. Appl., 194 (1995), 720-726. https://doi.org/10.1006/jmaa.1995.1325
  8. R.B. Gardner and A. Weems, A Bernstein-type of Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478. https://doi.org/10.1006/jmaa.1997.5838
  9. N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517. https://doi.org/10.1090/S0002-9947-1969-0236385-6
  10. P.D. Lax, Proof of a conjecture of P.Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513. https://doi.org/10.1090/S0002-9904-1944-08177-9
  11. M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
  12. G.V. Milovanovic, D.S. Mitrinovic and Th. Rassias, Topics in polynomials: External problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
  13. M.S. Pukhta, Ph.D Thesis, Submitted to the Jamia Millia Islamia, New Delhi, 1995.
  14. M.A. QAZI, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343. https://doi.org/10.1090/S0002-9939-1992-1113648-1
  15. Q.I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32. https://doi.org/10.1016/0021-9045(88)90073-1
  16. N.A. Rather, Extremal properties and location of the zeros of polynomials, Ph.D Thesis, University of Kashmir, 1998.
  17. W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company(reprinted in India), 1977.
  18. A.C. Schaeffer,Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579. https://doi.org/10.1090/S0002-9904-1941-07510-5
  19. A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400. https://doi.org/10.1112/plms/s2-34.1.392