DOI QR코드

DOI QR Code

Electrochemical Synthesis of Metal-organic Framework

전기화학적 방법을 통한 금속 유기 골격체 합성

  • Moon, Sanghyeon (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Kim, Jiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Choi, Hyun-Kuk (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Moon-Gab (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Young-Sei (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Kiyoung (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 문상현 (경북대학교 미래과학기술융합학과) ;
  • 김지영 (경북대학교 나노소재공학부) ;
  • 최현국 (경북대학교 나노소재공학부) ;
  • 김문갑 (경북대학교 나노소재공학부) ;
  • 이영세 (경북대학교 나노소재공학부) ;
  • 이기영 (경북대학교 미래과학기술융합학과)
  • Received : 2021.04.20
  • Accepted : 2021.05.11
  • Published : 2021.06.10

Abstract

During the last two decades, metal-organic frameworks (MOFs) have been drawn attention due to their high specific surface area, porosity, and catalytic activities that allow to use in many applications such as sensor, catalysis, energy storage, etc. To synthesize MOFs hydrothermal or solvothermal method were generally used. However, these methods require high-cost equipment and long time-spend for the synthesis with multi-step process. In contrast, electrochemical synthesis has been considered as a simple and easy process under the ambient conditions. In this review, we described the mechanism of electrochemical MOFs synthesis by the number of configured electrodes system, with the recent reports of various applications.

금속 유기 골격체는 최근 20년간 센서, 촉매, 에너지 저장과 같은 많은 응용분야에서 관심을 받아온 물질이다. 이 물질을 합성하기 위해 수열 합성, 유기용매열과 같은 합성법이 제시되어 왔으나, 그 공정이 복잡하면서 고비용·장시간이 소요된다는 문제점이 제기되어 왔다. 이를 해결하기 위한 전기화학적 합성법이 새롭게 제시되었는데, 간단한 준비절차와 특정한 온도·압력 조건 없이 합성할 수 있어 기존 합성법의 단점을 보완한다는 특징이 있다. 이에 본 총설논문에서는 전기화학적으로 합성 가능한 금속 유기 골격체의 종류와 전기화학적 합성 메커니즘을 다루고 있다. 전기화학적 합성법을 통해 형성된 금속 유기 골격체를 적용한 응용분야 연구동향을 정리하였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1I1A3A01041454) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03024962).

References

  1. F. A. A. Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S. Cavaleiro, and J. Rocha, Ligand design for functional metal-organic frameworks, Chem. Soc. Rev., 41, 1088-1110 (2012). https://doi.org/10.1039/C1CS15055C
  2. C. K. Brozek and M. Dinca, Cation exchange at the secondary building units of metal-organic frameworks, Chem. Soc. Rev., 43, 5456-5467 (2014). https://doi.org/10.1039/C4CS00002A
  3. H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 123044 (2013).
  4. E. A. Tomic, Thermal stability of coordination polymers, J. Appl. Polym. Sci., 9, 3745-3752 (1965). https://doi.org/10.1002/app.1965.070091121
  5. O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995). https://doi.org/10.1038/378703a0
  6. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  7. J.-Z. Wei, F.-X. Gong, X.-J. Sun, Y. Li, T. Zhang, X.-J. Zhao, and F.-M. Zhang, Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance, Inorg. Chem., 58, 6742-6747 (2019). https://doi.org/10.1021/acs.inorgchem.9b00157
  8. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science, 329, 424-428 (2010). https://doi.org/10.1126/science.1192160
  9. J. Lei, R. Qian, P. Ling, L. Cui, and H. Ju, Design and sensing applications of metal-organic framework composites, Trends Anal. Chem., 58, 71-78 (2014). https://doi.org/10.1016/j.trac.2014.02.012
  10. Y. Cui, B. Chen, and G. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications, Coord. Chem. Rev., 273, 76-86 (2014). https://doi.org/10.1016/j.ccr.2013.10.023
  11. S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, and R. Moos, Metal-organic frameworks for sensing applications in the gas phase, Sensors, 9, 1574-1589 (2009). https://doi.org/10.3390/s90301574
  12. J. L. Wang, C. Wang, and W. Lin, Metal-organic frameworks for light harvesting and photocatalysis, ACS Catal., 2, 2630-2640 (2012). https://doi.org/10.1021/cs3005874
  13. M. A. Nasalevich, M. Van Der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16, 4919-4926 (2014). https://doi.org/10.1039/C4CE00032C
  14. M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49, 10575-10577 (2013). https://doi.org/10.1039/C3CC46398B
  15. A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci., 5, 9269-9290 (2012). https://doi.org/10.1039/c2ee22989g
  16. J. Yang, P. Xiong, C. Zheng, H. Qiu, and M. Wei, Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode, J. Mater. Chem. A, 2, 16640-16644 (2014). https://doi.org/10.1039/C4TA04140B
  17. N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, and J. Fransaer, A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100 (Fe), ChemElectroChem, 1, 1182-1188 (2014). https://doi.org/10.1002/celc.201402022
  18. K. F. Babu, M. A. Kulandainathan, I. Katsounaros, L. Rassaei, A. D. Burrows, P. R. Raithby, and F. Marken, Electrocatalytic activity of basoliteTM F300 metal-organic-framework structures, Electrochem. Commun., 12, 632-635 (2010). https://doi.org/10.1016/j.elecom.2010.02.017
  19. J. R. Li, J. Sculley, and H. C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012). https://doi.org/10.1021/cr200190s
  20. S. Ma and H. C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun., 46, 44-53 (2010). https://doi.org/10.1039/B916295J
  21. R. Sabouni, H. Kazemian, and S. Rohani, Carbon dioxide capturing technologies: A review focusing on metal organic framework materials (MOFs), Environ. Sci. Pollut. Res., 21, 5427-5449 (2014). https://doi.org/10.1007/s11356-013-2406-2
  22. S. Couck, J.F.M. Denayer, G. V. Baron, T. Remy, J. Gascon, and F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc., 131, 6326-6327 (2009). https://doi.org/10.1021/ja900555r
  23. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011-6061 (2014). https://doi.org/10.1039/C4CS00094C
  24. J. Gascon, A. Corma, F. Kapteijn, and F. X. Llabres I Xamena, Metal organic framework catalysis: Quo vadis?, ACS Catal., 4, 361-378 (2014). https://doi.org/10.1021/cs400959k
  25. T. Zhang and W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43, 5982-5993 (2014). https://doi.org/10.1039/C4CS00103F
  26. Y. Li, C. Chen, X. Sun, J. Dou, and M. Wei, Metal-organic frameworks at interfaces in dye-sensitized solar cells, ChemSusChem, 7, 2469-2472 (2014). https://doi.org/10.1002/cssc.201402143
  27. M. Zhang, Z. Y. Gu, M. Bosch, Z. Perry, and H. C. Zhou, Biomimicry in metal-organic materials, Coord. Chem. Rev., 293, 327-356 (2015). https://doi.org/10.1016/j.ccr.2014.05.031
  28. J. Della Rocca, D. Liu, and W. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957-968 (2011). https://doi.org/10.1021/ar200028a
  29. Y. Liu, Z. Ng, E. A. Khan, H. K. Jeong, C. bun Ching, and Z. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater., 118, 296-301 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
  30. J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504 (2009). https://doi.org/10.1039/b802426j
  31. O. Shekhah, H. Wang, D. Zacher, R. A. Fischer, and C. Woll, Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route, Angew. Chem. Int. Ed., 48, 5038-5041 (2009). https://doi.org/10.1002/anie.200900378
  32. O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nat. Mater., 8, 481-484 (2009). https://doi.org/10.1038/nmat2445
  33. X.-L. Liu, Y.-S. Li, G.-Q. Zhu, Y.-J. Ban, L.-Y. Xu, and W.-S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem., 123, 10824-10827 (2011). https://doi.org/10.1002/ange.201104383
  34. F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren, and G. Zhu, Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism, J. Mater. Chem., 22, 25019-25026 (2012). https://doi.org/10.1039/c2jm34618d
  35. A. Schoedel, C. Scherb, and T. Bein, Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis, Angew. Chem.., 122, 7383-7386 (2010). https://doi.org/10.1002/ange.201001684
  36. I. Stassen, M. Styles, G. Grenci, H. Van Gorp, W. Vanderlinden, S. De Feyter, P. Falcaro, D. De Vos, P. Vereecken, and R. Ameloot, Chemical vapour deposition of zeolitic imidazolate framework thin films, Nat. Mater., 15, 304-310 (2016). https://doi.org/10.1038/nmat4509
  37. T. R. C. Van Assche, G. Desmet, R. Ameloot, D. E. De Vos, H. Terryn, and J. F. M. Denayer, Electrochemical synthesis of thin HKUST-1 layers on copper mesh, Microporous Mesoporous Mater., 158, 209-213 (2012). https://doi.org/10.1016/j.micromeso.2012.03.029
  38. N. Campagnol, T. R. C. Van Assche, M. Li, L. Stappers, M. Dinca, J. F. M. Denayer, K. Binnemans, D. E. De Vos, and J. Fransaer, On the electrochemical deposition of metal-organic frameworks, J. Mater. Chem. A., 4, 3914-3925 (2016). https://doi.org/10.1039/C5TA10782B
  39. F. Caddeo, R. Vogt, D. Weil, W. Sigle, M. E. Toimil-Molares, and A. W. Maijenburg, Tuning the size and shape of nanoMOFs via templated electrodeposition and subsequent electrochemical oxidation, ACS Appl. Mater. Interfaces., 11, 25378-25387 (2019). https://doi.org/10.1021/acsami.9b04449
  40. W. W. Lestari, R. E. Nugraha, I. D. Winarni, M. Adreane, and F. Rahmawati, Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for green diesel production, AIP Conf. Proc., American Institute of Physics Inc., 020038 (2016).
  41. M. Li and M. Dinca, Reductive electrosynthesis of crystalline metal-organic frameworks, J. Am. Chem. Soc., 133, 12926-12929 (2011). https://doi.org/10.1021/ja2041546
  42. M. Li and M. Dinca, On the mechanism of MOF-5 formation under cathodic bias, Chem. Mater., 27, 3203-3206 (2015). https://doi.org/10.1021/acs.chemmater.5b00899
  43. D. J. Tranchemontagne, J. L. Tranchemontagne, M. O'keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1257- 1283 (2009). https://doi.org/10.1039/b817735j
  44. J. R. Long and O. M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1213-1214 (2009). https://doi.org/10.1039/b903811f
  45. M. Li and M. Dinca, Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition, Chem. Sci., 5, 107-111 (2014). https://doi.org/10.1039/C3SC51815A
  46. G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, and K. Sun, A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes, J. Power Sources., 389, 8-12 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.001
  47. J. L. Du, X. Y. Zhang, C. P. Li, J. P. Gao, J. X. Hou, X. Jing, Y. J. Mu, and L. J. Li, A bi-functional luminescent Zn(II)-MOF for detection of nitroaromatic explosives and Fe3+ ions, Sens. Actuators, B Chem., 257, 207-213 (2018). https://doi.org/10.1016/j.snb.2017.10.159
  48. L. Wang, Z. Q. Yao, G. J. Ren, S. De Han, T. L. Hu, and X. H. Bu, A luminescent metal-organic framework for selective sensing of Fe3+ with excellent recyclability, Inorg. Chem. Commun., 65, 9-12 (2016). https://doi.org/10.1016/j.inoche.2016.01.004
  49. S. Pal and P. K. Bharadwaj, A luminescent terbium MOF containing hydroxyl groups exhibits selective sensing of nitroaromatic compounds and Fe(III) ions, Cryst. Growth Des., 16, 5852-5858 (2016). https://doi.org/10.1021/acs.cgd.6b00930
  50. P. Hu, X. Zhu, X. Luo, X. Hu, and L. Ji, Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A, Microchim. Acta, 187, 1-9 (2020). https://doi.org/10.1007/s00604-019-3921-8
  51. P. Arul, N. S. K. Gowthaman, S. A. John, and M. Tominaga, Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid, Electrochim. Acta, 354, 136673 (2020). https://doi.org/10.1016/j.electacta.2020.136673
  52. L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, and B. Wang, Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential, ACS Appl. Mater. Interfaces., 8, 16736-16743 (2016). https://doi.org/10.1021/acsami.6b05375
  53. J. Zhao, Y. Wang, J. Zhou, P. Qi, S. Li, K. Zhang, X. Feng, B. Wang, and C. Hu, A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production, J. Mater. Chem. A, 4, 7174-7177 (2016). https://doi.org/10.1039/C6TA00431H
  54. S. Jabarian, A. Ghaffarinejad, and H. Kazemi, Electrochemical and solvothermal syntheses of HKUST-1 metal organic frameworks and comparison of their performances as electrocatalyst for oxygen reduction reaction, Anal. Bioanal. Electrochem., 10, 1611-1619 (2018).
  55. W. Cao, Y. Liu, F. Xu, J. Li, D. Li, G. Du, and N. Chen, In situ electrochemical synthesis of Rod-Like Ni-MOFs as battery-type electrode for high performance hybrid supercapacitor, J. Electrochem. Soc., 167, 050503 (2020). https://doi.org/10.1149/2.0072005JES
  56. N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans, D. De Vos, and J. Fransaer, High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morphologies, J. Mater. Chem. A, 1, 5827-5830 (2013). https://doi.org/10.1039/c3ta10419b
  57. K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation, Korean J. Chem. Eng., 35, 974-983 (2018). https://doi.org/10.1007/s11814-017-0340-6
  58. F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, and F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property, Solid State Ionics., 301, 125-132 (2017). https://doi.org/10.1016/j.ssi.2017.01.022
  59. J. Vehrenberg, M. Vepsalainen, D. S. Macedo, M. Rubio-Martinez, N. A. S. Webster, and M. Wessling, Steady-state electrochemical synthesis of HKUST-1 with polarity reversal, Microporous Mesoporous Mater., 303, 110218 (2020). https://doi.org/10.1016/j.micromeso.2020.110218
  60. T. R. C. Van Assche, N. Campagnol, T. Muselle, H. Terryn, J. Fransaer, and J. F. M. Denayer, On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks, Microporous Mesoporous Mater., 224, 302-310 (2016). https://doi.org/10.1016/j.micromeso.2015.11.060
  61. L. L. Jiang, X. Zeng, M. Li, M. Q. Wang, T. Y. Su, X. C. Tian, and J. Tang, Rapid electrochemical synthesis of HKUST-1 on indium tin oxide, RSC Adv., 7, 9316-9320 (2017). https://doi.org/10.1039/C6RA26646K
  62. K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling, Front. Chem. Sci. Eng., 14, 233- 247 (2020). https://doi.org/10.1007/s11705-019-1893-1
  63. K. Saini, F. Joseph, A. Ramanan, and S. Sharma Bhatia, Electrochemical synthesis of a oxalate-linked copper (II) metal organic frameworks: X-ray crystallographic structure and its magnetic properies, Mater. Today Proc., Elsevier Ltd., 9616-9621 (2017).
  64. S. Jabarian and A. Ghaffarinejad, Electrochemical synthesis of NiBTC metal organic framework thin layer on nickel foam: An efficient electrocatalyst for the hydrogen evolution reaction, J. Inorg. Organomet. Polym. Mater., 29, 1565-1574 (2019). https://doi.org/10.1007/s10904-019-01120-4
  65. S. Khazalpour, V. Safarifard, A. Morsali, and D. Nematollahi, Electrochemical synthesis of pillared layer mixed ligand metal-organic framework: DMOF-1-Zn, RSC Adv., 5, 36547-36551 (2015). https://doi.org/10.1039/C5RA04446D
  66. H. M. Yang, X. Liu, X. L. Song, T. L. Yang, Z. H. Liang, and C. M. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr, Trans. Nonferrous Met. Soc. China, 25, 3987-3994 (2015). https://doi.org/10.1016/S1003-6326(15)64047-X
  67. R. Wei, H. Y. Chi, X. Li, D. Lu, Y. Wan, C. W. Yang, and Z. Lai, Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation, Adv. Funct. Mater., 30, 1907089 (2020) https://doi.org/10.1002/adfm.201907089