DOI QR코드

DOI QR Code

약물동태학 모형에 대한 변분 베이즈 방법

A variational Bayes method for pharmacokinetic model

  • 박선 (전북대학교 통계학과) ;
  • 조성일 (인하대학교 통계학과) ;
  • 이우주 (서울대학교 보건대학원)
  • Parka, Sun (Department of Statistics, Jeonbuk National University) ;
  • Jo, Seongil (Department of Statistics, Inha University) ;
  • Lee, Woojoo (Graduate School of Public Health, Seoul National University)
  • 투고 : 2020.10.05
  • 심사 : 2020.12.07
  • 발행 : 2021.02.28

초록

본 논문에서는 평균장 방법(mean-field methods)을 기반으로 사후 분포(posterior distribution)를 근사하는 방법인 변분 베이즈 방법(variational Bayes methods)에 대해 소개한다. 특히, 모수들을 실수공간으로 변환 후의 결합 사후분포를 가우시안 분포(Gaussian distribution)들의 곱(product)으로 근사하는 방법인 자동 미분 변분 추론(automatic differentiation variational inference)방법에 대해 자세히 소개하고, 환자에게 약물을 투여한 후 시간에 따라 약물의 흐름을 파악하는 연구인 약물동태학 모형(pharmacokinetic models)에 적용한다. 소개된 변분 베이즈 방법을 이용하여 자료분석을 실시하고 마코프 체인 몬테 카를로(Markov chain Monte Carlo)방법을 기초로한 자료분석의 결과와 비교한다. 알고리즘의 구현은 Stan을 이용한다.

In the following paper we introduce a variational Bayes method that approximates posterior distributions with mean-field method. In particular, we introduce automatic differentiation variation inference (ADVI), which approximates joint posterior distributions using the product of Gaussian distributions after transforming parameters into real coordinate space, and then apply it to pharmacokinetic models that are models for the study of the time course of drug absorption, distribution, metabolism and excretion. We analyze real data sets using ADVI and compare the results with those based on Markov chain Monte Carlo. We implement the algorithms using Stan.

키워드

과제정보

조성일의 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (NRF-2020R1C1C1A01013338).

참고문헌

  1. Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference, Ph. D. thesis, University College London, UK.
  2. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  3. Blei, D. M. and Jordan, M. I. (2004). Variational methods for the dirichlet processes. In Proceedings of the twenty-first international conference on Machine learning, pp. 12.
  4. Choi, J. S. (2000). Application of Pharmacokinetics, Shinilooks.
  5. Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities, Journal of the American statistical association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
  6. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis (3rd). Chapman and Hall/CRC.
  7. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
  8. Ghahramani, Z. and Beal, M. J. (2001). Propagation algorithms for variational Bayesian learning. In Advances in neural information processing systems, pp. 507-513.
  9. Godfrey, K. (1983). Compartment models and their application. Academic Press Inc. London/New York.
  10. Hardle, W. and Simar, L. (2012). Applied Multivariate Statistical Analysis. Springer.
  11. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
  12. Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593-1623.
  13. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine learning, 37, 183-233. https://doi.org/10.1023/A:1007665907178
  14. Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. (2015). Automatic differentiation variational inference in Stan. In Advances in neural information processing systems, pp. 568-576.
  15. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. (2017). Automatic differentiation variational inference. Journal of Machine Learning Research, 18, 430-474.
  16. Matcuura, K. (2016). Bayesian statistical modeling using Stan and R, Kyoritsu Shuppan Co., Ltd 343.
  17. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
  18. Olive, D. J. (2014). Statistical Theory and Inference. Springer.
  19. Robert, C. and Casella, G. (2013). Monte Carlo Statistical Methods. Springer.
  20. Shim, C. G. (1994). Pharmacokinetics. Seoul National University Press.
  21. Stan Development Team (2017). Stan Modeling Language User's Guide and Reference Manual.
  22. Upton, R. A., Thiercelin, J. F., Guentert, T. W., Wallace, S. M., Powell, J. R., Sansom, L., and Riegelman, S. (1982). Intraindividual variability in theophylline pharmacokinetics: statistical verification in 39 of 60 healthy young adults. Journal of Pharmacokinetics and Biopharmaceutices, 10, 123-134. https://doi.org/10.1007/BF01062330
  23. Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations of Trends in Machine Learning, 1, 1-305. https://doi.org/10.1561/2200000001
  24. Wakefield, J. (2013). Bayesian and Frequentist Regression Methods. Springer.